The flow of glaciers and ice-sheets as a problem in plasticity

A calculation is made of the distribution of stress and velocity in an ideal glacier and in an ideal ice-sheet. The ice is assumed to have a constant yield stress and to obey, like other polycrystalline plastic aggregates, the Levy-Mises equations of flow and either the Mises or the Tresca criterion...

Full description

Bibliographic Details
Published in:Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
Format: Article in Journal/Newspaper
Language:English
Published: The Royal Society 1951
Subjects:
Online Access:http://dx.doi.org/10.1098/rspa.1951.0140
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1951.0140
id crroyalsociety:10.1098/rspa.1951.0140
record_format openpolar
spelling crroyalsociety:10.1098/rspa.1951.0140 2024-09-30T14:35:23+00:00 The flow of glaciers and ice-sheets as a problem in plasticity 1951 http://dx.doi.org/10.1098/rspa.1951.0140 https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1951.0140 en eng The Royal Society https://royalsociety.org/journals/ethics-policies/data-sharing-mining/ Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences volume 207, issue 1091, page 554-572 ISSN 0080-4630 2053-9169 journal-article 1951 crroyalsociety https://doi.org/10.1098/rspa.1951.0140 2024-09-02T04:21:03Z A calculation is made of the distribution of stress and velocity in an ideal glacier and in an ideal ice-sheet. The ice is assumed to have a constant yield stress and to obey, like other polycrystalline plastic aggregates, the Levy-Mises equations of flow and either the Mises or the Tresca criterion of yielding. The solution obtained for an ideal glacier represents the two-dimensional flow of a long slab of ice down a gently undulating rough slope. The addition of ice to the upper surface by snowfall and the removal of ice by ablation are allowed for, but the frictional resistance of the sides of the glacier valley is neglected. Two states of flow are possible, ‘active’ and ‘passive’, corresponding to the active and passive Rankine states in soil mechanics. Which of these states occurs at a given place depends upon the relative magnitudes of the curvature of the bed and the rate of snowfall or ablation; a simple algebraic expression of this dependence is obtained. In both states of flow the velocity is greatest at the surface and decreases with depth according to an elliptical law. It is shown that, in accordance with observation, crevasses of limited depth can open in active flow but not in passive flow. The slip-line field for the problem has a close connexion with the directions and positions of shear faults (although the laminated structure of a glacier is doubtless also an important factor here). In passive flow the faults to be expected are similar to the ‘thrust planes’ often seen on glaciers. The theory suggests that in active flow a complementary sort of shear fault with the opposite direction of movement may occur—and there is some observational evidence for this. The tendency of glaciers to accentuate hollows in their beds is connected with the suggestion that erosion should proceed faster under passive flow than under active flow. The second solution obtained is formally similar but represents the two-dimensional flow of a large ice-sheet, such as the Greenland ice-cap. If a horizontal bed is assumed ... Article in Journal/Newspaper glacier Greenland Ice cap Ice Sheet The Royal Society Greenland Levy ENVELOPE(-66.567,-66.567,-66.320,-66.320) Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 207 1091 554 572
institution Open Polar
collection The Royal Society
op_collection_id crroyalsociety
language English
description A calculation is made of the distribution of stress and velocity in an ideal glacier and in an ideal ice-sheet. The ice is assumed to have a constant yield stress and to obey, like other polycrystalline plastic aggregates, the Levy-Mises equations of flow and either the Mises or the Tresca criterion of yielding. The solution obtained for an ideal glacier represents the two-dimensional flow of a long slab of ice down a gently undulating rough slope. The addition of ice to the upper surface by snowfall and the removal of ice by ablation are allowed for, but the frictional resistance of the sides of the glacier valley is neglected. Two states of flow are possible, ‘active’ and ‘passive’, corresponding to the active and passive Rankine states in soil mechanics. Which of these states occurs at a given place depends upon the relative magnitudes of the curvature of the bed and the rate of snowfall or ablation; a simple algebraic expression of this dependence is obtained. In both states of flow the velocity is greatest at the surface and decreases with depth according to an elliptical law. It is shown that, in accordance with observation, crevasses of limited depth can open in active flow but not in passive flow. The slip-line field for the problem has a close connexion with the directions and positions of shear faults (although the laminated structure of a glacier is doubtless also an important factor here). In passive flow the faults to be expected are similar to the ‘thrust planes’ often seen on glaciers. The theory suggests that in active flow a complementary sort of shear fault with the opposite direction of movement may occur—and there is some observational evidence for this. The tendency of glaciers to accentuate hollows in their beds is connected with the suggestion that erosion should proceed faster under passive flow than under active flow. The second solution obtained is formally similar but represents the two-dimensional flow of a large ice-sheet, such as the Greenland ice-cap. If a horizontal bed is assumed ...
format Article in Journal/Newspaper
title The flow of glaciers and ice-sheets as a problem in plasticity
spellingShingle The flow of glaciers and ice-sheets as a problem in plasticity
title_short The flow of glaciers and ice-sheets as a problem in plasticity
title_full The flow of glaciers and ice-sheets as a problem in plasticity
title_fullStr The flow of glaciers and ice-sheets as a problem in plasticity
title_full_unstemmed The flow of glaciers and ice-sheets as a problem in plasticity
title_sort flow of glaciers and ice-sheets as a problem in plasticity
publisher The Royal Society
publishDate 1951
url http://dx.doi.org/10.1098/rspa.1951.0140
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1951.0140
long_lat ENVELOPE(-66.567,-66.567,-66.320,-66.320)
geographic Greenland
Levy
geographic_facet Greenland
Levy
genre glacier
Greenland
Ice cap
Ice Sheet
genre_facet glacier
Greenland
Ice cap
Ice Sheet
op_source Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
volume 207, issue 1091, page 554-572
ISSN 0080-4630 2053-9169
op_rights https://royalsociety.org/journals/ethics-policies/data-sharing-mining/
op_doi https://doi.org/10.1098/rspa.1951.0140
container_title Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
container_volume 207
container_issue 1091
container_start_page 554
op_container_end_page 572
_version_ 1811638678093561856