Icelandic Geothermal Energy: Shifting Ground

Today’s energy sectors hold different potentials for saving on energy, carbon, and other greenhouse gases (GHGs). Buildings, for instance, represent more than 40% of energy use worldwide and one-third of GHGs (United Nations Environment Programme [UNEP], n.d.a). Improvements in heating, cooling, and...

Full description

Bibliographic Details
Main Author: Araújo, Kathleen
Format: Book Part
Language:unknown
Published: Oxford University Press 2018
Subjects:
Online Access:http://dx.doi.org/10.1093/oso/9780199362554.003.0007
Description
Summary:Today’s energy sectors hold different potentials for saving on energy, carbon, and other greenhouse gases (GHGs). Buildings, for instance, represent more than 40% of energy use worldwide and one-third of GHGs (United Nations Environment Programme [UNEP], n.d.a). Improvements in heating, cooling, and powering of buildings, as well as industrial processes, can deliver substantial and cost-effective savings. In line with this, geothermal energy represents a more unusual form of renewable energy in that it can directly contribute to heating, cooling, and electricity services. Unlike a number of its counterparts, geothermal energy can provide a more stable and renewable form of energy that is largely unaffected by weather. The chapter focuses on geothermal energy adoption in Iceland, “a little country that roars,” according to UNFCCC Executive Secretary Christina Figueres (Iceland Monitor, 2014), when discussing leadership in renewable energy use and related action. In developing its renewable energy leadership, Iceland has wrestled, like many countries, with tradeoffs in energy, the environment, and economic development. The chapter highlights the interplay of these interests and explores the innovative engineering and industrial spillovers in Iceland’s geothermal adoption. Iceland is a country of roughly 333,000 people, and is a global leader in renewable energy use (Islandsbanki, 2010; Ministry of the Environment, 2010; Statistics Iceland, 2017). Two-thirds of the country’s primary energy consists of geothermal energy, with roughly nine out of ten Icelandic homes heated by the fuel source and a quarter of the country’s electricity powered by it (Orkustofnun, 2015; Ragnarsson, 2015). The nation leads globally in terms of geothermal heat capacity per capita and serves as a principal source of international training and consulting on geothermal energy, with a diverse industrial cluster that has developed around the technology (Gekon, n.d.; United Nations University Geothermal Training Programme [UN- GTP], n.d). The ...