Introductory Overview

Elias argues (chapter 18, p. 370) that ecosystems are shaped by environmental changes that have occurred over thousands of years so that the century to millennial timescale is of particular significance because “it is on these timescales that ecosystems form, break apart, and reform in new configura...

Full description

Bibliographic Details
Main Authors: Smith, Raymond C., Goodin, Douglas G.
Format: Book Part
Language:unknown
Published: Oxford University Press 2003
Subjects:
Online Access:http://dx.doi.org/10.1093/oso/9780195150599.003.0030
Description
Summary:Elias argues (chapter 18, p. 370) that ecosystems are shaped by environmental changes that have occurred over thousands of years so that the century to millennial timescale is of particular significance because “it is on these timescales that ecosystems form, break apart, and reform in new configurations.” Within this context, the authors for the three chapters in part IV evaluate evidence for climate variability since the Last Glacial Maximum (LGM) to the present. They evaluate the biological responses to these longer term changes and highlight the importance of past climatic conditions on current ecosystem function. If we view, as Elias does, glacial climate as a filter through which ecosystems have passed, then variability since the LGM comprises a significant fraction of the biotic history that shaped current ecosystems. This is an overriding theme for this section. Fountain and Lyons (chapter 16), examining a dry valley ecosystem in Antarctica (MCM), evaluate various proxy records to establish the historic context of their landscape. They argue that this historical context is important for a full understanding of ecosystems and that it is especially important for the MCM ecosystem. Providing an excellent example of legacy, the effect of past imprints on current ecosystem function, they present evidence that past climatic variations truly dictate current ecosystem status. During the LGM, ice blocked the current Taylor Valley, forming a lake that contained phytoplankton and algal mats. Subsequent warming eliminated the blockage, drained the large lake, forming several smaller ones, and established the current landscape. The former large lake supplied nutrients to the soil and current lakes. Fountain and Lyons (p. 334) state that “the vital importance of climatic legacy in the dry valleys is due to its extreme environment, low biodiversity, and short food chains.” They also observe a “polar amplification,” whereby the sharp solid/liquid phase transition of water allows small changes in climate to produce ...