Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients

Abstract We investigate how H ii region temperature structure assumptions affect “direct-method” spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift z = 0.018, is a low-mass galaxy in a minor merger with inten...

Full description

Bibliographic Details
Published in:Monthly Notices of the Royal Astronomical Society
Main Authors: Cameron, Alex J, Yuan, Tiantian, Trenti, Michele, Nicholls, David C, Kewley, Lisa J
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2020
Subjects:
Online Access:http://dx.doi.org/10.1093/mnras/staa3757
http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staa3757/34802394/staa3757.pdf
id croxfordunivpr:10.1093/mnras/staa3757
record_format openpolar
spelling croxfordunivpr:10.1093/mnras/staa3757 2024-02-11T10:08:23+01:00 Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients Cameron, Alex J Yuan, Tiantian Trenti, Michele Nicholls, David C Kewley, Lisa J 2020 http://dx.doi.org/10.1093/mnras/staa3757 http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staa3757/34802394/staa3757.pdf en eng Oxford University Press (OUP) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Monthly Notices of the Royal Astronomical Society ISSN 0035-8711 1365-2966 Space and Planetary Science Astronomy and Astrophysics journal-article 2020 croxfordunivpr https://doi.org/10.1093/mnras/staa3757 2024-01-12T09:47:19Z Abstract We investigate how H ii region temperature structure assumptions affect “direct-method” spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift z = 0.018, is a low-mass galaxy in a minor merger with intense star formation, analogous to conditions at high redshifts. We use three methods to derive direct metallicities and compare with strong-line diagnostics. The spatial metallicity trends show significant differences among the three direct methods. Our first method is based on the commonly used electron temperature Te([O iii]) from the [O iii]λ4363 auroral line and a traditional Te([O ii]) – Te([O iii]) calibration. The second method applies a recent empirical correction to the O+ abundance from the [O iii]/[O ii] strong-line ratio. The third method infers the Te([O ii]) from the [S ii]λλ4069,76 auroral lines. The first method favours a positive metallicity gradient along SAMI609396B, whereas the second and third methods yield flattened gradients. Strong-line diagnostics produce mostly flat gradients, albeit with unquantified contamination from shocked regions. We conclude that overlooked assumptions about the internal temperature structure of H ii regions in the direct method can lead to large discrepancies in metallicity gradient studies. Our detailed analysis of SAMI609396B underlines that high-accuracy metallicity gradient measurements require a wide array of emission lines and improved spatial resolutions in order to properly constrain excitation sources, physical conditions, and temperature structures of the emitting gas. Integral-field spectroscopic studies with future facilities such as JWST/NIRSpec and ground-based ELTs will be crucial in minimising systematic effects on measured gradients in distant galaxies. Article in Journal/Newspaper sami Oxford University Press Monthly Notices of the Royal Astronomical Society
institution Open Polar
collection Oxford University Press
op_collection_id croxfordunivpr
language English
topic Space and Planetary Science
Astronomy and Astrophysics
spellingShingle Space and Planetary Science
Astronomy and Astrophysics
Cameron, Alex J
Yuan, Tiantian
Trenti, Michele
Nicholls, David C
Kewley, Lisa J
Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
topic_facet Space and Planetary Science
Astronomy and Astrophysics
description Abstract We investigate how H ii region temperature structure assumptions affect “direct-method” spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift z = 0.018, is a low-mass galaxy in a minor merger with intense star formation, analogous to conditions at high redshifts. We use three methods to derive direct metallicities and compare with strong-line diagnostics. The spatial metallicity trends show significant differences among the three direct methods. Our first method is based on the commonly used electron temperature Te([O iii]) from the [O iii]λ4363 auroral line and a traditional Te([O ii]) – Te([O iii]) calibration. The second method applies a recent empirical correction to the O+ abundance from the [O iii]/[O ii] strong-line ratio. The third method infers the Te([O ii]) from the [S ii]λλ4069,76 auroral lines. The first method favours a positive metallicity gradient along SAMI609396B, whereas the second and third methods yield flattened gradients. Strong-line diagnostics produce mostly flat gradients, albeit with unquantified contamination from shocked regions. We conclude that overlooked assumptions about the internal temperature structure of H ii regions in the direct method can lead to large discrepancies in metallicity gradient studies. Our detailed analysis of SAMI609396B underlines that high-accuracy metallicity gradient measurements require a wide array of emission lines and improved spatial resolutions in order to properly constrain excitation sources, physical conditions, and temperature structures of the emitting gas. Integral-field spectroscopic studies with future facilities such as JWST/NIRSpec and ground-based ELTs will be crucial in minimising systematic effects on measured gradients in distant galaxies.
format Article in Journal/Newspaper
author Cameron, Alex J
Yuan, Tiantian
Trenti, Michele
Nicholls, David C
Kewley, Lisa J
author_facet Cameron, Alex J
Yuan, Tiantian
Trenti, Michele
Nicholls, David C
Kewley, Lisa J
author_sort Cameron, Alex J
title Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
title_short Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
title_full Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
title_fullStr Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
title_full_unstemmed Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
title_sort spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
publisher Oxford University Press (OUP)
publishDate 2020
url http://dx.doi.org/10.1093/mnras/staa3757
http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staa3757/34802394/staa3757.pdf
genre sami
genre_facet sami
op_source Monthly Notices of the Royal Astronomical Society
ISSN 0035-8711 1365-2966
op_rights https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
op_doi https://doi.org/10.1093/mnras/staa3757
container_title Monthly Notices of the Royal Astronomical Society
_version_ 1790607557938642944