Trends in marine survival of Atlantic salmon populations in eastern Canada

Abstract Declines in wild Atlantic salmon (Salmo salar) abundance throughout the north Atlantic are primarily attributed to decreases in survival at sea. However, comparing trends in marine survival among populations is challenging as data on both migrating smolts and returning adults are sparse and...

Full description

Bibliographic Details
Published in:ICES Journal of Marine Science
Main Authors: Pardo, Sebastián A, Bolstad, Geir H, Dempson, J Brian, April, Julien, Jones, Ross A, Raab, Dustin, Hutchings, Jeffrey A
Other Authors: Zhou, Shijie, Norwegian Research Council
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2021
Subjects:
Online Access:http://dx.doi.org/10.1093/icesjms/fsab118
https://academic.oup.com/icesjms/article-pdf/78/7/2460/41746852/fsab118.pdf
Description
Summary:Abstract Declines in wild Atlantic salmon (Salmo salar) abundance throughout the north Atlantic are primarily attributed to decreases in survival at sea. However, comparing trends in marine survival among populations is challenging as data on both migrating smolts and returning adults are sparse and models are difficult to parameterize due to their varied life histories. We fit a hierarchical Bayesian maturity schedule model to data from seven populations in eastern Canada to estimate numbers of out-migrating smolts, survival in the first and second year at sea, and the proportion returning after 1 year. Trends in survival at sea were not consistent among populations; we observe positive, negative, and no correlations in these, suggesting that large-scale patterns of changes in marine survival are not necessarily representative for individual populations. Variation in return abundances was mostly explained by marine survival in the first winter at sea in all but one population. However, variation in the other components were not negligible and their relative importance differed among populations. If salmon populations do not respond in a uniform manner to changing environmental conditions throughout their range, future research initiatives should explore why.