An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history

Abstract At the centers of previously glaciated regions such as Hudson Bay in Canada and the Gulf of Bothnia in Fennoscandia, it has been observed that the sea level history follows an exponential form and that the associated decay time is relatively insensitive to uncertainty in the ice loading his...

Full description

Bibliographic Details
Published in:Geophysical Journal International
Main Authors: Kuchar, Joseph, Milne, Glenn, Hill, Alexander, Tarasov, Lev, Nordman, Maaria
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2019
Subjects:
Online Access:http://dx.doi.org/10.1093/gji/ggz512
http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggz512/30796500/ggz512.pdf
id croxfordunivpr:10.1093/gji/ggz512
record_format openpolar
spelling croxfordunivpr:10.1093/gji/ggz512 2024-09-09T19:40:05+00:00 An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history Kuchar, Joseph Milne, Glenn Hill, Alexander Tarasov, Lev Nordman, Maaria 2019 http://dx.doi.org/10.1093/gji/ggz512 http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggz512/30796500/ggz512.pdf en eng Oxford University Press (OUP) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Geophysical Journal International ISSN 0956-540X 1365-246X journal-article 2019 croxfordunivpr https://doi.org/10.1093/gji/ggz512 2024-06-17T04:16:39Z Abstract At the centers of previously glaciated regions such as Hudson Bay in Canada and the Gulf of Bothnia in Fennoscandia, it has been observed that the sea level history follows an exponential form and that the associated decay time is relatively insensitive to uncertainty in the ice loading history. We revisit the issue of decay time sensitivity by computing relative sea level histories for Richmond Gulf and James Bay in Hudson Bay and Ångerman River in Sweden for a suite of reconstructions of the North American and Fennoscandian Ice Sheets and Earth viscosity profiles. We find that while some Earth viscosity models do indeed show insensitivity in computed decay times to the ice history, this is not true in all cases. Moreover, we find that the location of the study site relative to the geometry of the ice sheet is an important factor in determining ice sensitivity, and based on our set of ice sheet reconstructions, conclude that the location of James Bay is not well-suited to a decay time analysis. We describe novel corrections to the RSL data to remove the effects associated with the spatial distribution of sea level indicators as well as for other signals unrelated to regional ice loading (ocean loading, rotation and global mean sea-level changes) and demonstrate that they can significantly affect the inference of viscosity structure. We performed a forward modelling analysis based on a commonly adopted 2-layer, sub-lithosphere viscosity structure to determine how the solution space of viscosity models changes with the input ice history at the three study sites. While the solution spaces depend on ice history, for both Richmond Gulf and Ångerman River there are regions of parameter space where solutions are common across all or most ice histories, indicating low ice load sensitivity for these mantle viscosity parameters. For example, in Richmond Gulf, upper mantle viscosity values of (0.3–0.5)x1021 Pa s and lower mantle viscosity values of (5–50)x1021 Pa s tend to satisfy the data constraint consistently ... Article in Journal/Newspaper Fennoscandia Fennoscandian Hudson Bay Ice Sheet James Bay Oxford University Press Canada Hudson Hudson Bay Geophysical Journal International
institution Open Polar
collection Oxford University Press
op_collection_id croxfordunivpr
language English
description Abstract At the centers of previously glaciated regions such as Hudson Bay in Canada and the Gulf of Bothnia in Fennoscandia, it has been observed that the sea level history follows an exponential form and that the associated decay time is relatively insensitive to uncertainty in the ice loading history. We revisit the issue of decay time sensitivity by computing relative sea level histories for Richmond Gulf and James Bay in Hudson Bay and Ångerman River in Sweden for a suite of reconstructions of the North American and Fennoscandian Ice Sheets and Earth viscosity profiles. We find that while some Earth viscosity models do indeed show insensitivity in computed decay times to the ice history, this is not true in all cases. Moreover, we find that the location of the study site relative to the geometry of the ice sheet is an important factor in determining ice sensitivity, and based on our set of ice sheet reconstructions, conclude that the location of James Bay is not well-suited to a decay time analysis. We describe novel corrections to the RSL data to remove the effects associated with the spatial distribution of sea level indicators as well as for other signals unrelated to regional ice loading (ocean loading, rotation and global mean sea-level changes) and demonstrate that they can significantly affect the inference of viscosity structure. We performed a forward modelling analysis based on a commonly adopted 2-layer, sub-lithosphere viscosity structure to determine how the solution space of viscosity models changes with the input ice history at the three study sites. While the solution spaces depend on ice history, for both Richmond Gulf and Ångerman River there are regions of parameter space where solutions are common across all or most ice histories, indicating low ice load sensitivity for these mantle viscosity parameters. For example, in Richmond Gulf, upper mantle viscosity values of (0.3–0.5)x1021 Pa s and lower mantle viscosity values of (5–50)x1021 Pa s tend to satisfy the data constraint consistently ...
format Article in Journal/Newspaper
author Kuchar, Joseph
Milne, Glenn
Hill, Alexander
Tarasov, Lev
Nordman, Maaria
spellingShingle Kuchar, Joseph
Milne, Glenn
Hill, Alexander
Tarasov, Lev
Nordman, Maaria
An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history
author_facet Kuchar, Joseph
Milne, Glenn
Hill, Alexander
Tarasov, Lev
Nordman, Maaria
author_sort Kuchar, Joseph
title An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history
title_short An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history
title_full An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history
title_fullStr An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history
title_full_unstemmed An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history
title_sort investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history
publisher Oxford University Press (OUP)
publishDate 2019
url http://dx.doi.org/10.1093/gji/ggz512
http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggz512/30796500/ggz512.pdf
geographic Canada
Hudson
Hudson Bay
geographic_facet Canada
Hudson
Hudson Bay
genre Fennoscandia
Fennoscandian
Hudson Bay
Ice Sheet
James Bay
genre_facet Fennoscandia
Fennoscandian
Hudson Bay
Ice Sheet
James Bay
op_source Geophysical Journal International
ISSN 0956-540X 1365-246X
op_rights https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
op_doi https://doi.org/10.1093/gji/ggz512
container_title Geophysical Journal International
_version_ 1809909321246441472