The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere

SUMMARY The (effective) elastic thickness of the lithosphere defines the strength of the lithosphere with respect to a load on it. Since the lithosphere is buoyant on a viscous mantle, its behaviour with respect to a load is not fully elastic, but rather viscoelastic. Fennoscandia is a well-known ar...

Full description

Bibliographic Details
Published in:Geophysical Journal International
Main Authors: Eshagh, Mehdi, Tenzer, Robert
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2021
Subjects:
Online Access:http://dx.doi.org/10.1093/gji/ggab292
http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggab292/39313745/ggab292.pdf
http://academic.oup.com/gji/article-pdf/227/3/1700/40085181/ggab292.pdf
id croxfordunivpr:10.1093/gji/ggab292
record_format openpolar
spelling croxfordunivpr:10.1093/gji/ggab292 2024-09-15T18:05:52+00:00 The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere Eshagh, Mehdi Tenzer, Robert 2021 http://dx.doi.org/10.1093/gji/ggab292 http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggab292/39313745/ggab292.pdf http://academic.oup.com/gji/article-pdf/227/3/1700/40085181/ggab292.pdf en eng Oxford University Press (OUP) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Geophysical Journal International volume 227, issue 3, page 1700-1714 ISSN 0956-540X 1365-246X journal-article 2021 croxfordunivpr https://doi.org/10.1093/gji/ggab292 2024-07-15T04:25:12Z SUMMARY The (effective) elastic thickness of the lithosphere defines the strength of the lithosphere with respect to a load on it. Since the lithosphere is buoyant on a viscous mantle, its behaviour with respect to a load is not fully elastic, but rather viscoelastic. Fennoscandia is a well-known area in the world where the lithosphere has not yet reached its isostatic equilibrium due to the ongoing uplift after the last glacial period at the end of the Pleistocene. To accommodate for this changing property of the lithosphere in time, we present the flexural model of isostasy that accommodates temporal variations of the lithospheric flexure. We then define a theoretical model for computing the elastic thickness of the lithosphere based on combining the flexural and gravimetric models of isostasy. We demonstrate that differences between the elastic and viscoelastic models are not that significant in Fennoscandia. This finding is explained by a relatively young age of the glacial load when compared to the Maxwell relaxation time. The approximation of an elastic shell is then permissible in order to determine the lithospheric structure and its properties. In this way, the elastic thickness can be estimated based on combining gravimetric and flexural models of isostasy. This approach takes into consideration the topographic and ocean-floor (bathymetric) relief as well as the lithospheric structural composition and the post-glacial rebound. In addition, rheological properties of the lithosphere are taken into consideration by means of involving the Young modulus and the Poisson ratio in the model, both parameters determined from seismic velocities. The results reveal that despite changes in the Moho geometry attributed to the glacial isostatic adjustment in Fennoscandia are typically less than 1 km, the corresponding changes in the lithospheric elastic thickness could reach or even exceed ±50 km. The sensitivity analysis confirms that even small changes in input parameters could significantly modify the result (i.e. ... Article in Journal/Newspaper Fennoscandia Oxford University Press Geophysical Journal International
institution Open Polar
collection Oxford University Press
op_collection_id croxfordunivpr
language English
description SUMMARY The (effective) elastic thickness of the lithosphere defines the strength of the lithosphere with respect to a load on it. Since the lithosphere is buoyant on a viscous mantle, its behaviour with respect to a load is not fully elastic, but rather viscoelastic. Fennoscandia is a well-known area in the world where the lithosphere has not yet reached its isostatic equilibrium due to the ongoing uplift after the last glacial period at the end of the Pleistocene. To accommodate for this changing property of the lithosphere in time, we present the flexural model of isostasy that accommodates temporal variations of the lithospheric flexure. We then define a theoretical model for computing the elastic thickness of the lithosphere based on combining the flexural and gravimetric models of isostasy. We demonstrate that differences between the elastic and viscoelastic models are not that significant in Fennoscandia. This finding is explained by a relatively young age of the glacial load when compared to the Maxwell relaxation time. The approximation of an elastic shell is then permissible in order to determine the lithospheric structure and its properties. In this way, the elastic thickness can be estimated based on combining gravimetric and flexural models of isostasy. This approach takes into consideration the topographic and ocean-floor (bathymetric) relief as well as the lithospheric structural composition and the post-glacial rebound. In addition, rheological properties of the lithosphere are taken into consideration by means of involving the Young modulus and the Poisson ratio in the model, both parameters determined from seismic velocities. The results reveal that despite changes in the Moho geometry attributed to the glacial isostatic adjustment in Fennoscandia are typically less than 1 km, the corresponding changes in the lithospheric elastic thickness could reach or even exceed ±50 km. The sensitivity analysis confirms that even small changes in input parameters could significantly modify the result (i.e. ...
format Article in Journal/Newspaper
author Eshagh, Mehdi
Tenzer, Robert
spellingShingle Eshagh, Mehdi
Tenzer, Robert
The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere
author_facet Eshagh, Mehdi
Tenzer, Robert
author_sort Eshagh, Mehdi
title The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere
title_short The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere
title_full The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere
title_fullStr The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere
title_full_unstemmed The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere
title_sort temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere
publisher Oxford University Press (OUP)
publishDate 2021
url http://dx.doi.org/10.1093/gji/ggab292
http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggab292/39313745/ggab292.pdf
http://academic.oup.com/gji/article-pdf/227/3/1700/40085181/ggab292.pdf
genre Fennoscandia
genre_facet Fennoscandia
op_source Geophysical Journal International
volume 227, issue 3, page 1700-1714
ISSN 0956-540X 1365-246X
op_rights https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
op_doi https://doi.org/10.1093/gji/ggab292
container_title Geophysical Journal International
_version_ 1810443373096468480