Fat-Deposition Strategies Among High-Latitude Passerine Migrants
Abstract We studied fat stores in passerine migrants at a high-latitude site in Fairbanks, Alaska (64°50'N, 147°50'W). We examined fat-deposition strategies during the final (spring) and initial (autumn) stages of long-distance migration, 1992–1998, to (1) improve understanding of geograph...
Published in: | The Auk |
---|---|
Main Authors: | , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Oxford University Press (OUP)
2005
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1093/auk/122.2.544 http://academic.oup.com/auk/article-pdf/122/2/544/29690627/auk0544.pdf |
Summary: | Abstract We studied fat stores in passerine migrants at a high-latitude site in Fairbanks, Alaska (64°50'N, 147°50'W). We examined fat-deposition strategies during the final (spring) and initial (autumn) stages of long-distance migration, 1992–1998, to (1) improve understanding of geographic fat-deposition patterns by adding a high-latitude perspective; (2) determine whether there are age-related differences in fat-deposition strategies in autumn; and (3) test the “spring fatter” hypothesis of seasonal fat-deposition, which suggests that migrants should carry more fat in spring when they near their breeding areas than in autumn when they depart. Our analyses examined factors affecting daily fat scores during migration and compared between-season differences in fat stores among a total of 18,685 individuals of 16 migrant species. In autumn, adults had higher visible subcutaneous fat scores than immatures in 11 of 16 species. However, in all but two species, those differences were attributable to the effects of overnight low temperature, day length, and time of day, rather than age, probably because of later departures by adults. Fat scores were higher in autumn than in spring in 6 of 16 species, and body-condition indices were higher in autumn in 5 of 16 species. Only one species showed higher fat scores in spring, but that difference was not reflected in a seasonal comparison of body- condition indices. No species arrived with high fat loads in spring, and generally low fat levels in autumn suggest that high-latitude passerine migrants in North America are paying most of the energetic costs of long-distance migration with resources obtained en route to their wintering grounds. Among passerine migrants near these high-latitude breeding grounds, seasonal fat-deposition strategies appear to be responding to energetic needs at the level of daily maintenance, rather than to hypothesized insurance needs in spring or to the forthcoming needs of a long- distance migration in autumn. |
---|