Capelin (Mallotus villosus) distribution and climate: a sea “canary” for marine ecosystem change

Abstract Capelin (Mallotus villosus) is a classic “r” adapted pelagic species that inhabits the northern boreal oceans at the margins of cold Arctic waters. The species originated in the North Pacific and colonized the North Atlantic at least once during interglacial periods of the past few million...

Full description

Bibliographic Details
Published in:ICES Journal of Marine Science
Main Author: Rose, G.A.
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2005
Subjects:
Online Access:http://dx.doi.org/10.1016/j.icesjms.2005.05.008
http://academic.oup.com/icesjms/article-pdf/62/7/1524/29125930/62-7-1524.pdf
Description
Summary:Abstract Capelin (Mallotus villosus) is a classic “r” adapted pelagic species that inhabits the northern boreal oceans at the margins of cold Arctic waters. The species originated in the North Pacific and colonized the North Atlantic at least once during interglacial periods of the past few million years. Capelin became the main forage species for many larger predatory fish, and also for seabirds and marine mammals. The colonizing abilities of capelin have been noted in historical anecdotes, typically in concert with climate variations. In this paper, all known shifts in distribution are catalogued. Shifts have taken place at the larval and adult stages, and some result in new spawning locations, others do not. Displacement distance relates to temperature change: log10(distancekm) = 0.28 × temperature change + 2.16 (p < 0.05, r2 = 0.91). The persistence of the shifts relates to the displacement distance: log10(persistencey) = 2.62 × log10(distancekm) − 6.56 (p < 0.05, r2 = 0.83). The quick and consistent response of capelin to temperature change, its importance to the North Atlantic foodweb, and established monitoring methods suggest this species as a sea “canary” for northern boreal marine ecosystem responses to climate variability and change.