Application of a sequential regime shift detection method to the Bering Sea ecosystem

Abstract A common problem of existing methods for regime shift detection is their poor performance at the ends of time-series. Consequently, shifts in environmental and biological indices are usually detected long after their actual appearance. A recently introduced method based on sequential t-test...

Full description

Bibliographic Details
Published in:ICES Journal of Marine Science
Main Authors: Rodionov, Sergei, Overland, James E.
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2005
Subjects:
Online Access:http://dx.doi.org/10.1016/j.icesjms.2005.01.013
http://academic.oup.com/icesjms/article-pdf/62/3/328/29151856/62-3-328.pdf
Description
Summary:Abstract A common problem of existing methods for regime shift detection is their poor performance at the ends of time-series. Consequently, shifts in environmental and biological indices are usually detected long after their actual appearance. A recently introduced method based on sequential t-test analysis of regime shifts (STARS) treats all incoming data in real time, signals the possibility of a regime shift as soon as possible, then monitors how perception of the magnitude of the shift changes over time. Results of a STARS application to the eastern Bering Sea ecosystem show how the 1989 and 1998 regime shifts manifest themselves in biotic and abiotic indices in comparison with the 1977 shift.