Nutrient requirements of polar Chlorella-like species

Eukaryotic micro-algae, well adapted to extremely low and varying temperatures, varying light intensities, as well as low availability of essential macronutrients and other resources, represent ideal producers in low-temperature biotechnological processes. In order to identify the nutrient requireme...

Full description

Bibliographic Details
Published in:Czech Polar Reports
Main Authors: Shukla, Satya Prakash, Kvíderová, Jana, Elster, Josef
Format: Article in Journal/Newspaper
Language:unknown
Published: Masaryk University Press 2011
Subjects:
Online Access:http://dx.doi.org/10.5817/cpr2011-1-1
https://journals.muni.cz/CPR/article/viewFile/12801/11112
Description
Summary:Eukaryotic micro-algae, well adapted to extremely low and varying temperatures, varying light intensities, as well as low availability of essential macronutrients and other resources, represent ideal producers in low-temperature biotechnological processes. In order to identify the nutrient requirements of six biotechnologically perspective Arctic and Antarctic soil Chlorella-like strains at various temperature and light regimes, the algae were cultivated in a unit for cross gradients of temperature (-4 to 24°C) and irradiance (5 to 65 µmol m-2 s-1), and at different nutrient treatments in each temperature-irradiance combination. The nutrient treatments included two different carbon (bicarbonate and carbonate concentrations of 1 and 5 mM) and nitrogen (nitrate concentrations of 50 amd 100 µM and ammonium concentrations 100 and 500 µM) forms at two different concentrations for each. Temperature and irradiance growth requirements were similar in the majority of strains reflecting thus comparable conditions in the original microhabitat, regardless of its geographic position. All studied strains tolerated low temperatures (1 to 5°C), but were able to grow even at temperatures above 20°C, thus, they were considered to be psychrotolerant. All experimental strains were able to grow at very low irradiances. Nutrient manipulation either did not affect the growth limits and optimum, or narrowed the growth optima; the response was strain-specific. Ammonium and nitrate additions resulted in decreased growth rates in all tested strains, with the exception of one strain in which growth stimulation was observed. The decrease in growth rate was probably due to nutrient oversaturation in the inhibited strains. Carbonate addition stimulated growth of all strains. Bicarbonate also increased the growth rate in all strains with one exception, in which bicarbonate inhibited growth, indicating thus carbon limitation during cultivation and different carbon uptake mechanisms.