Simulated responses and feedbacks of permafrost carbon under future emissions pathways and idealized solar geoengineering scenarios

Abstract The carbon-rich northern high-latitude permafrost is a potential climate tipping point. Once triggered, its thawing and release of carbon dioxide and methane might unleash irreversible changes in the Earth’s climate system. We investigate the response of permafrost under three Shared Socioe...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Chen, Yangxin, Moore, John C, Ji, Duoying
Other Authors: National Nature Science Foundation of China
Format: Article in Journal/Newspaper
Language:unknown
Published: IOP Publishing 2024
Subjects:
Online Access:http://dx.doi.org/10.1088/1748-9326/ad2433
https://iopscience.iop.org/article/10.1088/1748-9326/ad2433
https://iopscience.iop.org/article/10.1088/1748-9326/ad2433/pdf
Description
Summary:Abstract The carbon-rich northern high-latitude permafrost is a potential climate tipping point. Once triggered, its thawing and release of carbon dioxide and methane might unleash irreversible changes in the Earth’s climate system. We investigate the response of permafrost under three Shared Socioeconomic Pathways (SSPs) with no mitigation (SSP5-8.5), moderate mitigation (SSP2-4.5) and delayed mitigation (SSP5-3.4-OS), and three solar geoengineering scenarios applied to each experiment to prevent global warming from exceeding 2 °C above pre-industrial. The long-term negative emissions in SSP5-3.4-OS preserves much more frozen soil than SSP5-8.5, but shows nearly as much permafrost carbon loss this century as SSP2-4.5 due to its mid-century temperature overshoot. Solar geoengineering to meet the 2 °C target above pre-industrial effectively suppresses permafrost thawing and reduces subsequent carbon release from the soil. However, the carbon emission from permafrost still continues after the temperature is stabilized, due to the decomposition of thawed permafrost carbon. More solar insolation reduction is required to compensate the positive permafrost carbon feedback, which exerts greater impacts on the efficiency of solar geoengineering under a scenario with strong climate policy and lower carbon emissions.