Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions

Spiny lobsters rely on multiple biomineralized exoskeletal predator defenses that may be sensitive to ocean acidification (OA). Compromised mechanical integrity of these defensive structures may tilt predator-prey outcomes, leading to increased mortality in the lobsters’ environment. Here, we tested...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Lowder, Kaitlyn B., deVries, Maya S., Hattingh, Ruan, Day, James M. D., Andersson, Andreas J., Zerofski, Phillip J., Taylor, Jennifer R. A.
Other Authors: PADI Foundation
Format: Article in Journal/Newspaper
Language:unknown
Published: Frontiers Media SA 2022
Subjects:
Online Access:http://dx.doi.org/10.3389/fmars.2022.909017
https://www.frontiersin.org/articles/10.3389/fmars.2022.909017/full
id crfrontiers:10.3389/fmars.2022.909017
record_format openpolar
spelling crfrontiers:10.3389/fmars.2022.909017 2024-09-09T20:01:22+00:00 Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions Lowder, Kaitlyn B. deVries, Maya S. Hattingh, Ruan Day, James M. D. Andersson, Andreas J. Zerofski, Phillip J. Taylor, Jennifer R. A. PADI Foundation 2022 http://dx.doi.org/10.3389/fmars.2022.909017 https://www.frontiersin.org/articles/10.3389/fmars.2022.909017/full unknown Frontiers Media SA https://creativecommons.org/licenses/by/4.0/ Frontiers in Marine Science volume 9 ISSN 2296-7745 journal-article 2022 crfrontiers https://doi.org/10.3389/fmars.2022.909017 2024-08-27T04:05:25Z Spiny lobsters rely on multiple biomineralized exoskeletal predator defenses that may be sensitive to ocean acidification (OA). Compromised mechanical integrity of these defensive structures may tilt predator-prey outcomes, leading to increased mortality in the lobsters’ environment. Here, we tested the effects of OA-like conditions on the mechanical integrity of selected exoskeletal defenses of juvenile California spiny lobster, Panulirus interruptus . Young spiny lobsters reside in kelp forests with dynamic carbonate chemistry due to local metabolism and photosynthesis as well as seasonal upwelling, yielding daily and seasonal fluctuations in pH. Lobsters were exposed to a series of stable and diurnally fluctuating reduced pH conditions for three months (ambient pH/stable, 7.97; reduced pH/stable 7.67; reduced pH with low fluctuations, 7.67 ± 0.05; reduced pH with high fluctuations, 7.67 ± 0.10), after which we examined the intermolt composition (Ca and Mg content), ultrastructure (cuticle and layer thickness), and mechanical properties (hardness and stiffness) of selected exoskeletal predator defenses. Cuticle ultrastructure was consistently robust to pH conditions, while mineralization and mechanical properties were variable. Notably, the carapace was less mineralized under both reduced pH treatments with fluctuations, but with no effect on material properties, and the rostral horn had lower hardness in reduced/high fluctuating conditions without a corresponding difference in mineralization. Antennal flexural stiffness was lower in reduced, stable pH conditions compared to the reduced pH treatment with high fluctuations and not correlated with changes in cuticle structure or mineralization. These results demonstrate a complex relationship between mineralization and mechanical properties of the exoskeleton under changing ocean chemistry, and that fluctuating reduced pH conditions can induce responses not observed under the stable reduced pH conditions often used in OA research. Furthermore, this study shows ... Article in Journal/Newspaper Ocean acidification Frontiers (Publisher) Frontiers in Marine Science 9
institution Open Polar
collection Frontiers (Publisher)
op_collection_id crfrontiers
language unknown
description Spiny lobsters rely on multiple biomineralized exoskeletal predator defenses that may be sensitive to ocean acidification (OA). Compromised mechanical integrity of these defensive structures may tilt predator-prey outcomes, leading to increased mortality in the lobsters’ environment. Here, we tested the effects of OA-like conditions on the mechanical integrity of selected exoskeletal defenses of juvenile California spiny lobster, Panulirus interruptus . Young spiny lobsters reside in kelp forests with dynamic carbonate chemistry due to local metabolism and photosynthesis as well as seasonal upwelling, yielding daily and seasonal fluctuations in pH. Lobsters were exposed to a series of stable and diurnally fluctuating reduced pH conditions for three months (ambient pH/stable, 7.97; reduced pH/stable 7.67; reduced pH with low fluctuations, 7.67 ± 0.05; reduced pH with high fluctuations, 7.67 ± 0.10), after which we examined the intermolt composition (Ca and Mg content), ultrastructure (cuticle and layer thickness), and mechanical properties (hardness and stiffness) of selected exoskeletal predator defenses. Cuticle ultrastructure was consistently robust to pH conditions, while mineralization and mechanical properties were variable. Notably, the carapace was less mineralized under both reduced pH treatments with fluctuations, but with no effect on material properties, and the rostral horn had lower hardness in reduced/high fluctuating conditions without a corresponding difference in mineralization. Antennal flexural stiffness was lower in reduced, stable pH conditions compared to the reduced pH treatment with high fluctuations and not correlated with changes in cuticle structure or mineralization. These results demonstrate a complex relationship between mineralization and mechanical properties of the exoskeleton under changing ocean chemistry, and that fluctuating reduced pH conditions can induce responses not observed under the stable reduced pH conditions often used in OA research. Furthermore, this study shows ...
author2 PADI Foundation
format Article in Journal/Newspaper
author Lowder, Kaitlyn B.
deVries, Maya S.
Hattingh, Ruan
Day, James M. D.
Andersson, Andreas J.
Zerofski, Phillip J.
Taylor, Jennifer R. A.
spellingShingle Lowder, Kaitlyn B.
deVries, Maya S.
Hattingh, Ruan
Day, James M. D.
Andersson, Andreas J.
Zerofski, Phillip J.
Taylor, Jennifer R. A.
Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
author_facet Lowder, Kaitlyn B.
deVries, Maya S.
Hattingh, Ruan
Day, James M. D.
Andersson, Andreas J.
Zerofski, Phillip J.
Taylor, Jennifer R. A.
author_sort Lowder, Kaitlyn B.
title Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
title_short Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
title_full Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
title_fullStr Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
title_full_unstemmed Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
title_sort exoskeletal predator defenses of juvenile california spiny lobsters (panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
publisher Frontiers Media SA
publishDate 2022
url http://dx.doi.org/10.3389/fmars.2022.909017
https://www.frontiersin.org/articles/10.3389/fmars.2022.909017/full
genre Ocean acidification
genre_facet Ocean acidification
op_source Frontiers in Marine Science
volume 9
ISSN 2296-7745
op_rights https://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.3389/fmars.2022.909017
container_title Frontiers in Marine Science
container_volume 9
_version_ 1809933187121414144