Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata

Understanding the genetic basis of trait variations and their coordination between relative species or populations distributing in different environmental conditions is important in evolutionary biology. In marine ectotherms, growth-defense trade-offs are a common ecological and evolutionary phenome...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Wang, Chaogang, Li, Ao, Wang, Wei, Cong, Rihao, Wang, Luping, Zhang, Guofan, Li, Li
Other Authors: National Key Research and Development Program of China
Format: Article in Journal/Newspaper
Language:unknown
Published: Frontiers Media SA 2021
Subjects:
Online Access:http://dx.doi.org/10.3389/fmars.2021.744626
https://www.frontiersin.org/articles/10.3389/fmars.2021.744626/full
id crfrontiers:10.3389/fmars.2021.744626
record_format openpolar
spelling crfrontiers:10.3389/fmars.2021.744626 2024-04-14T08:10:41+00:00 Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata Wang, Chaogang Li, Ao Wang, Wei Cong, Rihao Wang, Luping Zhang, Guofan Li, Li National Key Research and Development Program of China 2021 http://dx.doi.org/10.3389/fmars.2021.744626 https://www.frontiersin.org/articles/10.3389/fmars.2021.744626/full unknown Frontiers Media SA https://creativecommons.org/licenses/by/4.0/ Frontiers in Marine Science volume 8 ISSN 2296-7745 Ocean Engineering Water Science and Technology Aquatic Science Global and Planetary Change Oceanography journal-article 2021 crfrontiers https://doi.org/10.3389/fmars.2021.744626 2024-03-19T09:17:58Z Understanding the genetic basis of trait variations and their coordination between relative species or populations distributing in different environmental conditions is important in evolutionary biology. In marine ectotherms, growth-defense trade-offs are a common ecological and evolutionary phenomenon. However, the biochemical and molecular mechanisms that govern these trade-offs in marine ectotherms in the evolutionary perspective remain poorly investigated. Oysters are among the most important species in global aquaculture. Crassostrea gigas ( C. gigas ) and Crassostrea angulata ( C. angulata ) are two allopatric congeneric dominant oyster species that inhabit the northern and southern intertidal areas of China. Wild C. gigas and C. angulata were spawned, and their F 1 progeny were cultured in the same sites to reduce the environmental effects. Untargeted metabolomics and transcriptomics, together with phenotypic parameters including morphological traits (growth performance), nutritional content (glycogen, crude fat, and fatty acid content), physiology (normalized oxygen consumption rate and total antioxidant capacity) were applied to assess metabolic and transcript divergences between C. gigas and C. angulata . Integrated analyses of metabolites and transcriptomes showed that C. gigas allocated more energy to storage and defense by suppressing glycolysis, fatty acid oxidation and by upregulating fatty acid synthesis, antioxidant gene expression, and related metabolites. The metabolic and transcript results were further confirmed by the phenotypic data that C. gigas has higher glycogen and crude fat content and fatty acid unsaturation and stronger antioxidant capacity than C. angulata . In contrast, C. angulata exhibited better growth performance and a higher oxygen consumption rate. These findings suggest that C. angulata allocates more energy to growth, which is embodied in its stronger aerobic capacity and higher levels of protein synthesis genes, metabolites, and growth-related biomarkers. This study will ... Article in Journal/Newspaper Crassostrea gigas Frontiers (Publisher) Frontiers in Marine Science 8
institution Open Polar
collection Frontiers (Publisher)
op_collection_id crfrontiers
language unknown
topic Ocean Engineering
Water Science and Technology
Aquatic Science
Global and Planetary Change
Oceanography
spellingShingle Ocean Engineering
Water Science and Technology
Aquatic Science
Global and Planetary Change
Oceanography
Wang, Chaogang
Li, Ao
Wang, Wei
Cong, Rihao
Wang, Luping
Zhang, Guofan
Li, Li
Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata
topic_facet Ocean Engineering
Water Science and Technology
Aquatic Science
Global and Planetary Change
Oceanography
description Understanding the genetic basis of trait variations and their coordination between relative species or populations distributing in different environmental conditions is important in evolutionary biology. In marine ectotherms, growth-defense trade-offs are a common ecological and evolutionary phenomenon. However, the biochemical and molecular mechanisms that govern these trade-offs in marine ectotherms in the evolutionary perspective remain poorly investigated. Oysters are among the most important species in global aquaculture. Crassostrea gigas ( C. gigas ) and Crassostrea angulata ( C. angulata ) are two allopatric congeneric dominant oyster species that inhabit the northern and southern intertidal areas of China. Wild C. gigas and C. angulata were spawned, and their F 1 progeny were cultured in the same sites to reduce the environmental effects. Untargeted metabolomics and transcriptomics, together with phenotypic parameters including morphological traits (growth performance), nutritional content (glycogen, crude fat, and fatty acid content), physiology (normalized oxygen consumption rate and total antioxidant capacity) were applied to assess metabolic and transcript divergences between C. gigas and C. angulata . Integrated analyses of metabolites and transcriptomes showed that C. gigas allocated more energy to storage and defense by suppressing glycolysis, fatty acid oxidation and by upregulating fatty acid synthesis, antioxidant gene expression, and related metabolites. The metabolic and transcript results were further confirmed by the phenotypic data that C. gigas has higher glycogen and crude fat content and fatty acid unsaturation and stronger antioxidant capacity than C. angulata . In contrast, C. angulata exhibited better growth performance and a higher oxygen consumption rate. These findings suggest that C. angulata allocates more energy to growth, which is embodied in its stronger aerobic capacity and higher levels of protein synthesis genes, metabolites, and growth-related biomarkers. This study will ...
author2 National Key Research and Development Program of China
format Article in Journal/Newspaper
author Wang, Chaogang
Li, Ao
Wang, Wei
Cong, Rihao
Wang, Luping
Zhang, Guofan
Li, Li
author_facet Wang, Chaogang
Li, Ao
Wang, Wei
Cong, Rihao
Wang, Luping
Zhang, Guofan
Li, Li
author_sort Wang, Chaogang
title Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata
title_short Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata
title_full Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata
title_fullStr Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata
title_full_unstemmed Integrated Application of Transcriptomics and Metabolomics Reveals the Energy Allocation-Mediated Mechanisms of Growth-Defense Trade-Offs in Crassostrea gigas and Crassostrea angulata
title_sort integrated application of transcriptomics and metabolomics reveals the energy allocation-mediated mechanisms of growth-defense trade-offs in crassostrea gigas and crassostrea angulata
publisher Frontiers Media SA
publishDate 2021
url http://dx.doi.org/10.3389/fmars.2021.744626
https://www.frontiersin.org/articles/10.3389/fmars.2021.744626/full
genre Crassostrea gigas
genre_facet Crassostrea gigas
op_source Frontiers in Marine Science
volume 8
ISSN 2296-7745
op_rights https://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.3389/fmars.2021.744626
container_title Frontiers in Marine Science
container_volume 8
_version_ 1796308329616637952