Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition

Sea-ice ridges constitute a large fraction of the ice volume in the Arctic Ocean, yet we know little about the evolution of these ice masses. Here we examine the thermal and morphological evolution of an Arctic first-year sea-ice ridge, from its formation to advanced melt. Initially the mean keel de...

Full description

Bibliographic Details
Main Authors: Salganik, Evgenii, Lange, Benjamin Allen, Itkin, Polona, Divine, Dmitry, Katlein, Christian, Nicolaus, Marcel, Hoppmann, Mario, Neckel, Niklas, Ricker, Robert, Høyland, Knut V., Granskog, Mats A.
Format: Other/Unknown Material
Language:unknown
Published: California Digital Library (CDL) 2023
Subjects:
Online Access:http://dx.doi.org/10.31223/x52082
id crescholarship:10.31223/x52082
record_format openpolar
spelling crescholarship:10.31223/x52082 2024-06-23T07:50:06+00:00 Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition Salganik, Evgenii Lange, Benjamin Allen Itkin, Polona Divine, Dmitry Katlein, Christian Nicolaus, Marcel Hoppmann, Mario Neckel, Niklas Ricker, Robert Høyland, Knut V. Granskog, Mats A. 2023 http://dx.doi.org/10.31223/x52082 unknown California Digital Library (CDL) posted-content 2023 crescholarship https://doi.org/10.31223/x52082 2024-05-24T13:23:15Z Sea-ice ridges constitute a large fraction of the ice volume in the Arctic Ocean, yet we know little about the evolution of these ice masses. Here we examine the thermal and morphological evolution of an Arctic first-year sea-ice ridge, from its formation to advanced melt. Initially the mean keel depth was 5.6 m and mean sail height was 0.7 m. The initial rubble macroporosity (fraction of seawater filled voids) was estimated at 29% from ice drilling and 43–46% from buoy temperature. From January until mid-April, the ridge consolidated slowly by heat loss to the atmosphere and the total consolidated layer growth during this phase was 0.7 m. From mid-April to mid-June, there was a sudden increase of ridge consolidation rate despite no increase in conductive heat flux. We surmise this change was related to decreased macroporosity due to transport of snow-slush to the ridge keel rubble via adjacent open leads. In this period, the mean thickness of the consolidated layer increased by 2.1 m. At the peak of melt in June–July we suggest that the consolidation was related to the refreezing of surface snow and ice meltwater and of ridge keel meltwater (the latter only about 15% of total consolidation). We used the morphology parameters of the ridge to calculate its hydrostatic equilibrium and obtained a more accurate estimate of the actual consolidation of the keel, correcting from 2.2 m to 2.8 m for average keel consolidation. This approach also allowed us to estimate that the average keel melt of 0.3 m, in June–July, was accompanied by a decrease in ridge draft of 0.9 m. An ice mass balance buoy in the ridge indicated total consolidation of 2.8 m, of which 2.1 m was related to the rapid mode of consolidation from April to June. By mid-June, consolidation resulted in a drastic decrease of the macroporosity of the interior of keel while the flanks had little or no change in macroporosity. These results are important to understanding the role of ridge keels as meltwater sources and sinks and as sanctuary for ice-associated ... Other/Unknown Material Arctic Arctic Ocean Sea ice eScholarship Repository (University of California) Arctic Arctic Ocean
institution Open Polar
collection eScholarship Repository (University of California)
op_collection_id crescholarship
language unknown
description Sea-ice ridges constitute a large fraction of the ice volume in the Arctic Ocean, yet we know little about the evolution of these ice masses. Here we examine the thermal and morphological evolution of an Arctic first-year sea-ice ridge, from its formation to advanced melt. Initially the mean keel depth was 5.6 m and mean sail height was 0.7 m. The initial rubble macroporosity (fraction of seawater filled voids) was estimated at 29% from ice drilling and 43–46% from buoy temperature. From January until mid-April, the ridge consolidated slowly by heat loss to the atmosphere and the total consolidated layer growth during this phase was 0.7 m. From mid-April to mid-June, there was a sudden increase of ridge consolidation rate despite no increase in conductive heat flux. We surmise this change was related to decreased macroporosity due to transport of snow-slush to the ridge keel rubble via adjacent open leads. In this period, the mean thickness of the consolidated layer increased by 2.1 m. At the peak of melt in June–July we suggest that the consolidation was related to the refreezing of surface snow and ice meltwater and of ridge keel meltwater (the latter only about 15% of total consolidation). We used the morphology parameters of the ridge to calculate its hydrostatic equilibrium and obtained a more accurate estimate of the actual consolidation of the keel, correcting from 2.2 m to 2.8 m for average keel consolidation. This approach also allowed us to estimate that the average keel melt of 0.3 m, in June–July, was accompanied by a decrease in ridge draft of 0.9 m. An ice mass balance buoy in the ridge indicated total consolidation of 2.8 m, of which 2.1 m was related to the rapid mode of consolidation from April to June. By mid-June, consolidation resulted in a drastic decrease of the macroporosity of the interior of keel while the flanks had little or no change in macroporosity. These results are important to understanding the role of ridge keels as meltwater sources and sinks and as sanctuary for ice-associated ...
format Other/Unknown Material
author Salganik, Evgenii
Lange, Benjamin Allen
Itkin, Polona
Divine, Dmitry
Katlein, Christian
Nicolaus, Marcel
Hoppmann, Mario
Neckel, Niklas
Ricker, Robert
Høyland, Knut V.
Granskog, Mats A.
spellingShingle Salganik, Evgenii
Lange, Benjamin Allen
Itkin, Polona
Divine, Dmitry
Katlein, Christian
Nicolaus, Marcel
Hoppmann, Mario
Neckel, Niklas
Ricker, Robert
Høyland, Knut V.
Granskog, Mats A.
Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
author_facet Salganik, Evgenii
Lange, Benjamin Allen
Itkin, Polona
Divine, Dmitry
Katlein, Christian
Nicolaus, Marcel
Hoppmann, Mario
Neckel, Niklas
Ricker, Robert
Høyland, Knut V.
Granskog, Mats A.
author_sort Salganik, Evgenii
title Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
title_short Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
title_full Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
title_fullStr Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
title_full_unstemmed Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
title_sort different mechanisms of arctic first-year sea-ice ridge consolidation observed during the mosaic expedition
publisher California Digital Library (CDL)
publishDate 2023
url http://dx.doi.org/10.31223/x52082
geographic Arctic
Arctic Ocean
geographic_facet Arctic
Arctic Ocean
genre Arctic
Arctic Ocean
Sea ice
genre_facet Arctic
Arctic Ocean
Sea ice
op_doi https://doi.org/10.31223/x52082
_version_ 1802640878175518720