Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system

Bibliographic Details
Published in:Aquacultural Engineering
Main Authors: Gutiérrez-Estrada, Juan C, de Pedro-Sanz, Emiliano, López-Luque, Rafael, Pulido-Calvo, Inmaculada
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2004
Subjects:
Online Access:http://dx.doi.org/10.1016/j.aquaeng.2004.03.001
https://api.elsevier.com/content/article/PII:S0144860904000159?httpAccept=text/xml
https://api.elsevier.com/content/article/PII:S0144860904000159?httpAccept=text/plain
id crelsevierbv:10.1016/j.aquaeng.2004.03.001
record_format openpolar
spelling crelsevierbv:10.1016/j.aquaeng.2004.03.001 2024-03-10T08:29:55+00:00 Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system Gutiérrez-Estrada, Juan C de Pedro-Sanz, Emiliano López-Luque, Rafael Pulido-Calvo, Inmaculada 2004 http://dx.doi.org/10.1016/j.aquaeng.2004.03.001 https://api.elsevier.com/content/article/PII:S0144860904000159?httpAccept=text/xml https://api.elsevier.com/content/article/PII:S0144860904000159?httpAccept=text/plain en eng Elsevier BV https://www.elsevier.com/tdm/userlicense/1.0/ Aquacultural Engineering volume 31, issue 3-4, page 183-203 ISSN 0144-8609 Aquatic Science journal-article 2004 crelsevierbv https://doi.org/10.1016/j.aquaeng.2004.03.001 2024-02-14T20:40:02Z Article in Journal/Newspaper Anguilla anguilla ScienceDirect (Elsevier) Aquacultural Engineering 31 3-4 183 203
institution Open Polar
collection ScienceDirect (Elsevier)
op_collection_id crelsevierbv
language English
topic Aquatic Science
spellingShingle Aquatic Science
Gutiérrez-Estrada, Juan C
de Pedro-Sanz, Emiliano
López-Luque, Rafael
Pulido-Calvo, Inmaculada
Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
topic_facet Aquatic Science
format Article in Journal/Newspaper
author Gutiérrez-Estrada, Juan C
de Pedro-Sanz, Emiliano
López-Luque, Rafael
Pulido-Calvo, Inmaculada
author_facet Gutiérrez-Estrada, Juan C
de Pedro-Sanz, Emiliano
López-Luque, Rafael
Pulido-Calvo, Inmaculada
author_sort Gutiérrez-Estrada, Juan C
title Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
title_short Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
title_full Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
title_fullStr Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
title_full_unstemmed Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
title_sort comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (anguilla anguilla l.) intensive rearing system
publisher Elsevier BV
publishDate 2004
url http://dx.doi.org/10.1016/j.aquaeng.2004.03.001
https://api.elsevier.com/content/article/PII:S0144860904000159?httpAccept=text/xml
https://api.elsevier.com/content/article/PII:S0144860904000159?httpAccept=text/plain
genre Anguilla anguilla
genre_facet Anguilla anguilla
op_source Aquacultural Engineering
volume 31, issue 3-4, page 183-203
ISSN 0144-8609
op_rights https://www.elsevier.com/tdm/userlicense/1.0/
op_doi https://doi.org/10.1016/j.aquaeng.2004.03.001
container_title Aquacultural Engineering
container_volume 31
container_issue 3-4
container_start_page 183
op_container_end_page 203
_version_ 1793136065702264832