Managing for change: Using vertebrate at sea habitat use to direct management efforts

To understand and predict current and future distributions of animals under a changing climate it is essential to establish historical ranges as baselines against which distribution shifts can be assessed. Management approaches also require comprehension of temporal variability in spatial distributi...

Full description

Bibliographic Details
Main Authors: Arthur, Benjamin, Hindell, Mark, Bester, Marthan, De Bruyn, P.J. Nico, Goebel, Michael E., Trathan, Phil, Lea, Mary-Anne
Format: Other/Unknown Material
Language:unknown
Published: Center for Open Science 2018
Subjects:
Online Access:http://dx.doi.org/10.31230/osf.io/nrfwb
id crcenteros:10.31230/osf.io/nrfwb
record_format openpolar
spelling crcenteros:10.31230/osf.io/nrfwb 2024-03-03T08:37:16+00:00 Managing for change: Using vertebrate at sea habitat use to direct management efforts Arthur, Benjamin Hindell, Mark Bester, Marthan De Bruyn, P.J. Nico Goebel, Michael E. Trathan, Phil Lea, Mary-Anne 2018 http://dx.doi.org/10.31230/osf.io/nrfwb unknown Center for Open Science https://creativecommons.org/licenses/by/4.0/legalcode posted-content 2018 crcenteros https://doi.org/10.31230/osf.io/nrfwb 2024-02-07T10:54:52Z To understand and predict current and future distributions of animals under a changing climate it is essential to establish historical ranges as baselines against which distribution shifts can be assessed. Management approaches also require comprehension of temporal variability in spatial distributions that can occur over shorter time scales, such as inter-annually or seasonally. Focussing on the Southern Ocean, one of the most rapidly changing environments on Earth, we used Species Distribution Models (SDMs) and satellite ocean data to reconstruct the likely historical foraging habitats of Antarctic fur seals (Arctocephalus gazella) from three populations during the non-breeding winter (Marion Island, Bird Island and Cape Shirreff), to assess whether habitat quality has changed in recent decades. We then quantified temporal variability in distributions to assess overlap with management areas (CCAMLR – Commission for the Conservation of Antarctic Marine Living Resources) and the potential for competition with fisheries. Despite notable physical ocean changes, the quality of foraging habitat during the non-breeding season has remained relatively consistent over 20 years at Marion and Bird Islands, but less so at Cape Shirreff, where reduced sea ice cover has improved habitat accessibility. Spatio-temporally explicit SDMs identified variability in habitats across the winter. Some areas overlapped significantly with fisheries activities, suggesting a potential for competition for prey resources at several key periods. A significant component of core habitat at all populations was not within the CCAMLR Convention Area. Although organisations such as CCAMLR adopt a precautionary, ecosystem-based approach to fisheries management, changes to the physical environment and developments in the fishing industry can affect how dependant species are impacted. The hindcasting of historical spatial distributions shown here are baselines against which future changes can be assessed. Given recent proposals for a system of marine ... Other/Unknown Material Antarc* Antarctic Antarctic Fur Seals Arctocephalus gazella Bird Island Marion Island Sea ice Southern Ocean COS Center for Open Science Antarctic Southern Ocean Bird Island ENVELOPE(-38.060,-38.060,-54.004,-54.004) Shirreff ENVELOPE(-60.792,-60.792,-62.459,-62.459) Cape Shirreff ENVELOPE(-60.800,-60.800,-62.417,-62.417)
institution Open Polar
collection COS Center for Open Science
op_collection_id crcenteros
language unknown
description To understand and predict current and future distributions of animals under a changing climate it is essential to establish historical ranges as baselines against which distribution shifts can be assessed. Management approaches also require comprehension of temporal variability in spatial distributions that can occur over shorter time scales, such as inter-annually or seasonally. Focussing on the Southern Ocean, one of the most rapidly changing environments on Earth, we used Species Distribution Models (SDMs) and satellite ocean data to reconstruct the likely historical foraging habitats of Antarctic fur seals (Arctocephalus gazella) from three populations during the non-breeding winter (Marion Island, Bird Island and Cape Shirreff), to assess whether habitat quality has changed in recent decades. We then quantified temporal variability in distributions to assess overlap with management areas (CCAMLR – Commission for the Conservation of Antarctic Marine Living Resources) and the potential for competition with fisheries. Despite notable physical ocean changes, the quality of foraging habitat during the non-breeding season has remained relatively consistent over 20 years at Marion and Bird Islands, but less so at Cape Shirreff, where reduced sea ice cover has improved habitat accessibility. Spatio-temporally explicit SDMs identified variability in habitats across the winter. Some areas overlapped significantly with fisheries activities, suggesting a potential for competition for prey resources at several key periods. A significant component of core habitat at all populations was not within the CCAMLR Convention Area. Although organisations such as CCAMLR adopt a precautionary, ecosystem-based approach to fisheries management, changes to the physical environment and developments in the fishing industry can affect how dependant species are impacted. The hindcasting of historical spatial distributions shown here are baselines against which future changes can be assessed. Given recent proposals for a system of marine ...
format Other/Unknown Material
author Arthur, Benjamin
Hindell, Mark
Bester, Marthan
De Bruyn, P.J. Nico
Goebel, Michael E.
Trathan, Phil
Lea, Mary-Anne
spellingShingle Arthur, Benjamin
Hindell, Mark
Bester, Marthan
De Bruyn, P.J. Nico
Goebel, Michael E.
Trathan, Phil
Lea, Mary-Anne
Managing for change: Using vertebrate at sea habitat use to direct management efforts
author_facet Arthur, Benjamin
Hindell, Mark
Bester, Marthan
De Bruyn, P.J. Nico
Goebel, Michael E.
Trathan, Phil
Lea, Mary-Anne
author_sort Arthur, Benjamin
title Managing for change: Using vertebrate at sea habitat use to direct management efforts
title_short Managing for change: Using vertebrate at sea habitat use to direct management efforts
title_full Managing for change: Using vertebrate at sea habitat use to direct management efforts
title_fullStr Managing for change: Using vertebrate at sea habitat use to direct management efforts
title_full_unstemmed Managing for change: Using vertebrate at sea habitat use to direct management efforts
title_sort managing for change: using vertebrate at sea habitat use to direct management efforts
publisher Center for Open Science
publishDate 2018
url http://dx.doi.org/10.31230/osf.io/nrfwb
long_lat ENVELOPE(-38.060,-38.060,-54.004,-54.004)
ENVELOPE(-60.792,-60.792,-62.459,-62.459)
ENVELOPE(-60.800,-60.800,-62.417,-62.417)
geographic Antarctic
Southern Ocean
Bird Island
Shirreff
Cape Shirreff
geographic_facet Antarctic
Southern Ocean
Bird Island
Shirreff
Cape Shirreff
genre Antarc*
Antarctic
Antarctic Fur Seals
Arctocephalus gazella
Bird Island
Marion Island
Sea ice
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctic Fur Seals
Arctocephalus gazella
Bird Island
Marion Island
Sea ice
Southern Ocean
op_rights https://creativecommons.org/licenses/by/4.0/legalcode
op_doi https://doi.org/10.31230/osf.io/nrfwb
_version_ 1792497876212908032