Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons
The structure and composition of baleen from seven species of whales was studied using tensiometry. X-ray diffraction, and elemental analysis. Baleen was found to be composed principally of amorphous and α-keratin. Hydroxyapatite (bone mineral, Ca 10 (PO 4 ) 6 OH 2 ) was present in all species. Cert...
Published in: | Canadian Journal of Zoology |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Canadian Science Publishing
1984
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1139/z84-032 http://www.nrcresearchpress.com/doi/pdf/10.1139/z84-032 |
id |
crcansciencepubl:10.1139/z84-032 |
---|---|
record_format |
openpolar |
spelling |
crcansciencepubl:10.1139/z84-032 2024-05-12T08:01:33+00:00 Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons Aubin, D. J. St. Stinson, R. H. Geraci, J. R. 1984 http://dx.doi.org/10.1139/z84-032 http://www.nrcresearchpress.com/doi/pdf/10.1139/z84-032 en eng Canadian Science Publishing http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining Canadian Journal of Zoology volume 62, issue 2, page 193-198 ISSN 0008-4301 1480-3283 Animal Science and Zoology Ecology, Evolution, Behavior and Systematics journal-article 1984 crcansciencepubl https://doi.org/10.1139/z84-032 2024-04-18T06:54:53Z The structure and composition of baleen from seven species of whales was studied using tensiometry. X-ray diffraction, and elemental analysis. Baleen was found to be composed principally of amorphous and α-keratin. Hydroxyapatite (bone mineral, Ca 10 (PO 4 ) 6 OH 2 ) was present in all species. Certain elements, notably manganese, copper, boron, iron, and calcium were more highly concentrated in the fibers than in the matrix of the plate. The breaking strength of baleen plates from fin (Balaenoptera physalus), sei (B. borealis), and grey (Eschrichtius robustus) whales was comparable to that of buffalo horn, in the range of 2−9 × 10 6 N∙m −2 . The stiffness of baleen was somewhat less than that of other keratinized tissues. Treatment with 10% (v/v) trichloroacetic acid for 8 days removed most of the calcium salts, denatured α-keratin, and made fin whale plates stronger and stiffer. Exposure to gasoline for 1.5 h or 14 days, crude oil for 8 days, or tar for 21 days resulted in loss of trace elements from baleen, and inconsistent changes in keratin organization. After tar exposure, fin whale baleen plates were stiffer and stronger. We presume that at sea, baleen would be relatively resistant to damage by spilled oil. Article in Journal/Newspaper Balaenoptera physalus Fin whale Canadian Science Publishing Canadian Journal of Zoology 62 2 193 198 |
institution |
Open Polar |
collection |
Canadian Science Publishing |
op_collection_id |
crcansciencepubl |
language |
English |
topic |
Animal Science and Zoology Ecology, Evolution, Behavior and Systematics |
spellingShingle |
Animal Science and Zoology Ecology, Evolution, Behavior and Systematics Aubin, D. J. St. Stinson, R. H. Geraci, J. R. Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons |
topic_facet |
Animal Science and Zoology Ecology, Evolution, Behavior and Systematics |
description |
The structure and composition of baleen from seven species of whales was studied using tensiometry. X-ray diffraction, and elemental analysis. Baleen was found to be composed principally of amorphous and α-keratin. Hydroxyapatite (bone mineral, Ca 10 (PO 4 ) 6 OH 2 ) was present in all species. Certain elements, notably manganese, copper, boron, iron, and calcium were more highly concentrated in the fibers than in the matrix of the plate. The breaking strength of baleen plates from fin (Balaenoptera physalus), sei (B. borealis), and grey (Eschrichtius robustus) whales was comparable to that of buffalo horn, in the range of 2−9 × 10 6 N∙m −2 . The stiffness of baleen was somewhat less than that of other keratinized tissues. Treatment with 10% (v/v) trichloroacetic acid for 8 days removed most of the calcium salts, denatured α-keratin, and made fin whale plates stronger and stiffer. Exposure to gasoline for 1.5 h or 14 days, crude oil for 8 days, or tar for 21 days resulted in loss of trace elements from baleen, and inconsistent changes in keratin organization. After tar exposure, fin whale baleen plates were stiffer and stronger. We presume that at sea, baleen would be relatively resistant to damage by spilled oil. |
format |
Article in Journal/Newspaper |
author |
Aubin, D. J. St. Stinson, R. H. Geraci, J. R. |
author_facet |
Aubin, D. J. St. Stinson, R. H. Geraci, J. R. |
author_sort |
Aubin, D. J. St. |
title |
Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons |
title_short |
Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons |
title_full |
Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons |
title_fullStr |
Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons |
title_full_unstemmed |
Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons |
title_sort |
aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons |
publisher |
Canadian Science Publishing |
publishDate |
1984 |
url |
http://dx.doi.org/10.1139/z84-032 http://www.nrcresearchpress.com/doi/pdf/10.1139/z84-032 |
genre |
Balaenoptera physalus Fin whale |
genre_facet |
Balaenoptera physalus Fin whale |
op_source |
Canadian Journal of Zoology volume 62, issue 2, page 193-198 ISSN 0008-4301 1480-3283 |
op_rights |
http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining |
op_doi |
https://doi.org/10.1139/z84-032 |
container_title |
Canadian Journal of Zoology |
container_volume |
62 |
container_issue |
2 |
container_start_page |
193 |
op_container_end_page |
198 |
_version_ |
1798843662933688320 |