Potential changes in carbon dynamics due to climate change measured in the past two decades

Evidence suggests that climate change dynamics have been occurring in the northern latitudes for the past two and a half decades. The CENTURY ecosystem model was used for a set of simulations related to the carbon dynamics of interior Alaska taiga forest types. The functional dynamics of three age-c...

Full description

Bibliographic Details
Published in:Canadian Journal of Forest Research
Main Authors: Yarie, John, Parton, Bill
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2005
Subjects:
Online Access:http://dx.doi.org/10.1139/x05-106
http://www.nrcresearchpress.com/doi/pdf/10.1139/x05-106
Description
Summary:Evidence suggests that climate change dynamics have been occurring in the northern latitudes for the past two and a half decades. The CENTURY ecosystem model was used for a set of simulations related to the carbon dynamics of interior Alaska taiga forest types. The functional dynamics of three age-classes (young, middle, and mature) of three ecosystem types (white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill.) BSP), and hardwoods) were compared using an average climate that was present prior to 1980 and the climate record from 1980 to 2000. Estimates for total ecosystem production indicate a decrease in tree carbon capture for hardwood stands for all three age-classes summed across a 20-year climate change period. White spruce displayed increases in carbon capture for the three age-classes. Young and mid-aged black spruce stands showed a decrease in ecosystem productivity. The old-growth black spruce stand showed a small increase in carbon capture. Dynamics displayed for the entire ecosystem (soil organic matter, tree dynamics, dead wood, and forest litter) followed the same trends as vegetation productivity. For the same 20-year climate period and across all three age-classes, carbon capture decreased for hardwood ecosystems and increased for white spruce ecosystems. The young black spruce system showed a change from a positive carbon balance to a negative carbon balance. Based on the landscape area covered by each vegetation type, we suggest that the net effect of climate warming over the past 20 years has been a substantial decrease in carbon capture in the forests of interior Alaska.