Purification and characterization of a chymosinlike protease from the gastric mucosa of harp seal ( Pagophilus groenlandicus )

Four zymogens of acidic proteases A, B, C, and D were isolated from the gastric mucosa of harp seals by ion-exchange chromatography on a diethylaminoethyl-Sephadex A-50 column. The major zymogens were A and C, and the ratio of zymogen A to zymogen C was greater in extracts from 1-week-old animals th...

Full description

Bibliographic Details
Published in:Canadian Journal of Biochemistry and Cell Biology
Main Authors: Shamsuzzaman, K., Haard, N. F.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1984
Subjects:
Online Access:http://dx.doi.org/10.1139/o84-091
http://www.nrcresearchpress.com/doi/pdf/10.1139/o84-091
Description
Summary:Four zymogens of acidic proteases A, B, C, and D were isolated from the gastric mucosa of harp seals by ion-exchange chromatography on a diethylaminoethyl-Sephadex A-50 column. The major zymogens were A and C, and the ratio of zymogen A to zymogen C was greater in extracts from 1-week-old animals than in extracts from adult animals. Zymogens A and C were further purified by affinity chromatography using carbobenzoxy-D-phenylalaninetriethylene tetramine Sepharose and gel filtration on a Sephadex G-100 column. Certain physical and catalytic properties of proteases A and C were compared with those of calf chymosin (EC 3.4.23.4) and porcine pepsin (EC 3.4.23.1). Zymogen C and the corresponding enzyme were homogeneous on analytical polyacrylamide gel electrophoresis. Zymogen A was homogeneous as judged by sodium dodecyl sulphate (SDS) – polyacrylamide gel electrophoresis and high performance liquid chromatography, but was heterogenous by polyacrylamide gel electrophoresis at pH 8.3. Zymogens A and C had molecular weights of 33 800 and 44 000, respectively, as estimated by SDS–polyacrylamide gel electrophoresis. Protease A had an isoelectric point of 4.90. Protease A was similar to calf chymosin with respect to several criteria. It had a higher ratio of milk-clotting to proteolytic activity than those of seal protease C and porcine pepsin and had a pH optimum of 2.2–3.5 for hemoglobin hydrolysis. It did not inactivate ribonuclease, had very low activity on N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine and lost activity in 6 M urea. These results indicate protease A is chymosinlike.