The growing degree-day and fish size-at-age: the overlooked metric

Growth rate in ectotherms, including most fish, is a function of temperature. For decades, agriculturalists (270+ years) and entomologists (45+ years) have recognized the thermal integral, known as the growing degree-day (GDD, °C·day), to be a reliable predictor of growth and development. Fish and f...

Full description

Bibliographic Details
Published in:Canadian Journal of Fisheries and Aquatic Sciences
Main Authors: Neuheimer, Anna B, Taggart, Christopher T
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2007
Subjects:
Online Access:http://dx.doi.org/10.1139/f07-003
http://www.nrcresearchpress.com/doi/pdf/10.1139/f07-003
Description
Summary:Growth rate in ectotherms, including most fish, is a function of temperature. For decades, agriculturalists (270+ years) and entomologists (45+ years) have recognized the thermal integral, known as the growing degree-day (GDD, °C·day), to be a reliable predictor of growth and development. Fish and fisheries researchers have yet to widely acknowledge the power of the GDD in explaining growth and development among fishes. We demonstrate that fish length-at-day (LaD), in most cases prior to maturation, is a strong linear function of the GDD metric that can explain >92% of the variation in LaD among 41 data sets representing nine fish species drawn from marine and freshwater environments, temperate and tropical climes, constant and variable temperature regimes, and laboratory and field studies. The GDD demonstrates explanatory power across large spatial scales, e.g., 93% of the variation in LaD for age-2 to -4 Atlantic cod (Gadus morhua) across their entire range (17 stocks) is explained by one simple GDD function. Moreover, GDD can explain much of the variation in fish egg development time and in aquatic invertebrate (crab) size-at-age. Our analysis extends the well-established and physiologically relevant GDD metric to fish where, relative to conventional time-based methods, it provides greater explanatory power.