Reconstructing the lives of fish using Sr isotopes in otoliths
For many species, understanding the processes underlying variation in life history strategies is limited by the difficulty of tracking individuals throughout their lives. Within the rapidly expanding field of otolith microchemistry, novel approaches are being combined with state-of-the-art analytica...
Published in: | Canadian Journal of Fisheries and Aquatic Sciences |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Canadian Science Publishing
2002
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1139/f02-070 http://www.nrcresearchpress.com/doi/pdf/10.1139/f02-070 |
Summary: | For many species, understanding the processes underlying variation in life history strategies is limited by the difficulty of tracking individuals throughout their lives. Within the rapidly expanding field of otolith microchemistry, novel approaches are being combined with state-of-the-art analytical techniques to provide new and valuable information about the environmental history of fishes. However, no approach to date allows the reconstruction of fish movements at high temporal resolution (weeks to months) over relatively small spatial scales (110 km). We used micromilling techniques to extract strontium (Sr) isotopic signatures from the otoliths of four returning Atlantic salmon (Salmo salar) adults. Distinct Sr isotopic signatures were detectable from four life cycle stages, including prefeeding hatchery development, rearing stream growth, smolt out-migration, and ocean residence. High-resolution analyses of Sr isotope records establish that natal stream signatures are recoverable and show that both site fidelity within the freshwater stage and the timing of migration vary considerably among individuals. Results made possible with this approach provide insight into a long-standing debate on the mobility of salmon during their nonmigratory stage. The ability to resolve flexible behaviors of salmon increases our understanding of their population biology and conservation needs. |
---|