Seismic stratigraphy of late Cenozoic sediments in the northern Labrador Sea: a history of bottom circulation and glaciation

The seismicstratigraphy of the upper 1 km of sediment in the northern Labrador Sea has been determined from the examination of about 26 000 line kilometres of seismic profiles. Four key reflectors (A to D) have been correlated with Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) ho...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Authors: Myers, Robert A., Piper, David J. W.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1988
Subjects:
Online Access:http://dx.doi.org/10.1139/e88-191
http://www.nrcresearchpress.com/doi/pdf/10.1139/e88-191
Description
Summary:The seismicstratigraphy of the upper 1 km of sediment in the northern Labrador Sea has been determined from the examination of about 26 000 line kilometres of seismic profiles. Four key reflectors (A to D) have been correlated with Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) holes and range in age from mid-Pliocene to approximately mid-Pleistocene. Ten seismic facies have been distinguished and are interpreted as resulting from slope progradation, turbidite deposition in channels and on the basin floor, and widespread contourite deposition.Tertiary sediments are predominantly hemipelagic or contourite, but in the mid-Pliocene, turbidite deposition began in the northeast Labrador Basin, which might reflect either Greenland glaciation or lowering of sea level. At the same time, widespread erosion and buildup of drift deposits indicate that there was an intensification of bottom-water circulation, probably reflecting high-latitude cooling. This was followed by a return to less dynamic conditions as increased sea-ice cover reduced bottom-water generation in high-latitude seas. A turbidite deep-sea fan developed off Hudson Strait in the Early Pleistocene. In the mid- and late Quaternary, there was a major increase in the supply of turbidites from the Labrador margin, accompanied by the development of an extensive channel system on the continental margin. This was a consequence of glacial ice sheets extending to the top of the continental slope and discharging sediment directly to deep water.