Cornwallis Fold Belt and the mechanism of basement uplift
Cornwallis Fold Belt is a north-trending anticlinorium more than 650 km (400 mi) long, that extends from the Precambrian Shield to the Sverdrup Basin. It is the folded and faulted sedimentary suprastructure that overlies Precambrian crystalline basement rocks of the Boothia Horst. The horst and fold...
Published in: | Canadian Journal of Earth Sciences |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Canadian Science Publishing
1977
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1139/e77-123 http://www.nrcresearchpress.com/doi/pdf/10.1139/e77-123 |
Summary: | Cornwallis Fold Belt is a north-trending anticlinorium more than 650 km (400 mi) long, that extends from the Precambrian Shield to the Sverdrup Basin. It is the folded and faulted sedimentary suprastructure that overlies Precambrian crystalline basement rocks of the Boothia Horst. The horst and fold belt represent lower and intermediate levels of the Boothia Uplift. Evolution of the Cornwallis Fold Belt includes two phases, formation and modification.Formation. The basic structure of the Cornwallis Belt, a relatively simple, steep-sided, north-plunging anticlinorium, was formed in the interval from Proterozoic to Late Devonian time during several discrete phases of deformation that involved a similar stress pattern. These phases can be attributed to pulses of differential vertical uplift of the underlying Boothia Horst. The earliest phases involved periods of gentle arching of the crystalline basement and sedimentary cover in late Proterozoic and early Paleozoic times. The fold belt was formed mainly by the Cornwallis Disturbance (new name) which involved further differential vertical uplift, and comprised several pulses: (1) Early Silurian, mild, affecting only part of the belt; (2) Early Devonian, very strong, affecting the entire belt; (3) late Early Devonian, moderately strong, affecting the entire belt; (4) Late Devonian, moderately strong, affecting the entire belt. Each pulse was a cycle that began with uplift and erosion of the fold belt and shedding of detritus into the adjacent basins, and was followed by broader regional subsidence and the resumption of deposition on the belt. Between pulses of uplift there was regional subsidence, during which the fold belt subsided less than the flanking basins and received less sediments.Differential vertical displacement originated in the crystalline basement, occurring along fault zones that define the Boothia Horst, and are parallel to and controlled by a steep to vertical north-trending foliation. Faults extend into the sedimentary suprastructure comprising the ... |
---|