Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville

The various parameters used to predict on a regional scale the lateral and vertical extension of permafrost are the following: surface temperature, thermal conductivity of rocks, and geothermal flow configuration. Locally this type of data is generally not sufficient and far too inaccurate. The use...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Author: K.-Seguin, Maurice
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1977
Subjects:
Online Access:http://dx.doi.org/10.1139/e77-043
http://www.nrcresearchpress.com/doi/pdf/10.1139/e77-043
id crcansciencepubl:10.1139/e77-043
record_format openpolar
spelling crcansciencepubl:10.1139/e77-043 2023-12-17T10:48:24+01:00 Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville K.-Seguin, Maurice 1977 http://dx.doi.org/10.1139/e77-043 http://www.nrcresearchpress.com/doi/pdf/10.1139/e77-043 en eng Canadian Science Publishing http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining Canadian Journal of Earth Sciences volume 14, issue 3, page 431-443 ISSN 0008-4077 1480-3313 General Earth and Planetary Sciences journal-article 1977 crcansciencepubl https://doi.org/10.1139/e77-043 2023-11-19T13:38:24Z The various parameters used to predict on a regional scale the lateral and vertical extension of permafrost are the following: surface temperature, thermal conductivity of rocks, and geothermal flow configuration. Locally this type of data is generally not sufficient and far too inaccurate. The use of geophysical methods at the surface and in boreholes in addition to existing thermal data helps to improve the degree of accuracy in the prediction of spatial distribution of permafrost in a given area. These geophysical methods include seismic refraction, electrical resistivity, and spontaneous and induced polarizations.Because of the properties of permafrost, seismic refraction at surface is useful only to determine the top of the permafrost whereas electrical resistivity (electric logging near surface) allows the determination of the upper and lower limits of permafrost. Seismic refraction, resistivity, and spontaneous and induced polarizations in boreholes were deemed more promising to determine masses or lenses of permafrost.Moreover, it was possible to correlate temperature and electrical resistivity measurements in boreholes, thus allowing the drawing of isothermal curves from electric logging in areas of continuous and discontinuous permafrost, at least when it is 'marginal'.The data for this study were obtained from the experimental station at Schefferville, Québec. [Journal Translation] Article in Journal/Newspaper permafrost pergélisol Canadian Science Publishing (via Crossref) Canadian Journal of Earth Sciences 14 3 431 443
institution Open Polar
collection Canadian Science Publishing (via Crossref)
op_collection_id crcansciencepubl
language English
topic General Earth and Planetary Sciences
spellingShingle General Earth and Planetary Sciences
K.-Seguin, Maurice
Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville
topic_facet General Earth and Planetary Sciences
description The various parameters used to predict on a regional scale the lateral and vertical extension of permafrost are the following: surface temperature, thermal conductivity of rocks, and geothermal flow configuration. Locally this type of data is generally not sufficient and far too inaccurate. The use of geophysical methods at the surface and in boreholes in addition to existing thermal data helps to improve the degree of accuracy in the prediction of spatial distribution of permafrost in a given area. These geophysical methods include seismic refraction, electrical resistivity, and spontaneous and induced polarizations.Because of the properties of permafrost, seismic refraction at surface is useful only to determine the top of the permafrost whereas electrical resistivity (electric logging near surface) allows the determination of the upper and lower limits of permafrost. Seismic refraction, resistivity, and spontaneous and induced polarizations in boreholes were deemed more promising to determine masses or lenses of permafrost.Moreover, it was possible to correlate temperature and electrical resistivity measurements in boreholes, thus allowing the drawing of isothermal curves from electric logging in areas of continuous and discontinuous permafrost, at least when it is 'marginal'.The data for this study were obtained from the experimental station at Schefferville, Québec. [Journal Translation]
format Article in Journal/Newspaper
author K.-Seguin, Maurice
author_facet K.-Seguin, Maurice
author_sort K.-Seguin, Maurice
title Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville
title_short Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville
title_full Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville
title_fullStr Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville
title_full_unstemmed Détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de Schefferville
title_sort détermination de la géométrie et des propriétés physiques du pergélisol discontinu de la région de schefferville
publisher Canadian Science Publishing
publishDate 1977
url http://dx.doi.org/10.1139/e77-043
http://www.nrcresearchpress.com/doi/pdf/10.1139/e77-043
genre permafrost
pergélisol
genre_facet permafrost
pergélisol
op_source Canadian Journal of Earth Sciences
volume 14, issue 3, page 431-443
ISSN 0008-4077 1480-3313
op_rights http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
op_doi https://doi.org/10.1139/e77-043
container_title Canadian Journal of Earth Sciences
container_volume 14
container_issue 3
container_start_page 431
op_container_end_page 443
_version_ 1785572557164904448