U–Pb geochronology of detrital zircons in metasedimentary rocks from southern Baffin Island: implications for the Paleoproterozoic tectonic evolution of Northeastern Laurentia

A geochronological investigation of metasedimentary rocks from southern Baffin Island using the Geological Survey of Canada SHRIMP II (sensitive high-resolution ion microprobe) has characterized the ages of detrital zircon populations to determine their provenance, bracket timing of deposition, and...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Authors: Scott, David J, Stern, Richard A, St-Onge, Marc R, McMullen, Sarah M
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2002
Subjects:
Online Access:http://dx.doi.org/10.1139/e01-093
http://www.nrcresearchpress.com/doi/pdf/10.1139/e01-093
Description
Summary:A geochronological investigation of metasedimentary rocks from southern Baffin Island using the Geological Survey of Canada SHRIMP II (sensitive high-resolution ion microprobe) has characterized the ages of detrital zircon populations to determine their provenance, bracket timing of deposition, and distinguish potentially distinct sequences of rocks. Four lithologically and structurally distinct metasedimentary packages have been identified; each appears to have been derived from a different source region. In the structurally lowest package, all analysed zircons are Archean, and > 90% have ages between 2.83 and 2.63 Ga; these rocks are interpreted as the northernmost exposures of the Paleoproterozoic Povungnituk Group of the Cape Smith Belt, northern Quebec, with detritus derived from the Superior craton. Occupying the intermediate structural levels, the most abundant supracrustal rocks on southern Baffin Island are siliciclastic and carbonate units of the Lake Harbour Group, and the Tasiuyak paragneiss. Five samples show a dominantly Paleoproterozoic signature (2.2–1.9 Ga), with only rare Archean zircons; the provenance of this detritus is uncertain. In the distinct package of feldspathic quartzite and pelite that stratigraphically overlies the Lake Harbour Group, all of the analysed detrital grains are Archean, ~80% are > 2.83 Ga, with a small proportion of the grains in excess of 3.0 Ga; all of this material is thought to be derived from the Archean craton exposed on the Hall Peninsula east of the study area. Finally, at the highest structural level, a sample associated with the Hall Peninsula orthogneisses contains zircons with prominent modes at 2.92, 2.82, and 2.77 Ga, consistent with derivation from the surrounding orthogneisses.