Growth release of stunted black spruce ( Picea mariana ) in Kalmia heath: the role of ectomycorrhizal fungi and near-ground microclimate
Naturally regenerating and planted black spruce (Picea mariana (Mill.) B.S.P.) in post-fire landscapes in eastern Canada often exhibit stunted growth in the presence of ericaceous shrubs such as Kalmia angustifolia L. After a period of stunted growth, some seedlings experience a growth release, exhi...
Published in: | Canadian Journal of Forest Research |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Canadian Science Publishing
2016
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1139/cjfr-2015-0267 http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjfr-2015-0267 http://www.nrcresearchpress.com/doi/pdf/10.1139/cjfr-2015-0267 |
Summary: | Naturally regenerating and planted black spruce (Picea mariana (Mill.) B.S.P.) in post-fire landscapes in eastern Canada often exhibit stunted growth in the presence of ericaceous shrubs such as Kalmia angustifolia L. After a period of stunted growth, some seedlings experience a growth release, exhibiting growth rates closer to normally growing seedlings. We hypothesized that an increase in colonization of root tips by ectomycorrhizal (ECM) fungi is responsible for this release and that the percentage of root tips colonized by ECM fungi would be higher on seedlings that had a released or normally growing neighbour within close proximity. We quantified ECM fungi diversity and abundance from 255 soil cores from stunted, released, and normally growing black spruce seedlings sampled in two Kalmia-dominated sites in Newfoundland. Growth and microsite characteristics around each seedling were also measured. We found that normal and released seedlings had significantly higher proportions of ECM fungi root tips than stunted seedlings, supporting our final hypothesis; however, there was no significant difference in distance between neighbours. Soil chemical properties are thought to inhibit the vegetative spread of ECM fungi species in this particular system and are identified as an important topic for further research. |
---|