Predicting the impacts of escaped farmed Atlantic salmon on wild salmon populations
The escape of Atlantic salmon (Salmo salar) from aquaculture facilities can result in both negative genetic and ecological interactions with wild populations, yet the ability to predict the associated risk to wild populations has remained elusive. Here we assess the potential of a spatiotemporal dat...
Published in: | Canadian Journal of Fisheries and Aquatic Sciences |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Canadian Science Publishing
2018
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1139/cjfas-2017-0386 http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjfas-2017-0386 http://www.nrcresearchpress.com/doi/pdf/10.1139/cjfas-2017-0386 |
Summary: | The escape of Atlantic salmon (Salmo salar) from aquaculture facilities can result in both negative genetic and ecological interactions with wild populations, yet the ability to predict the associated risk to wild populations has remained elusive. Here we assess the potential of a spatiotemporal database of aquaculture facility locations, production estimates, and escape events to predict the distribution of escaped farmed salmon and genetic impacts on wild populations in the Northwest Atlantic. Industry production data, reported escape events, and in-river detections of escaped farmed salmon were collected from across the Northwest Atlantic. Genetic estimates of impact were obtained using single nucleotide polymorphisms (95 loci) representing aquaculture and wild salmon throughout the region (30 populations, 3048 individuals). Both the number of escaped farmed salmon detected at counting facilities and the magnitude of genetic impacts were positively correlated with a cumulative spatial measure of aquaculture production. Our results suggest that the risk of escapees and genetic introgression from wild–farmed salmon interactions can be assessed using information on farm production characteristics. This represents a first step in predicting the impact of existing cage-based farms on wild Atlantic salmon. |
---|