Glacial erosion on a snowball Earth: testing for bias in flux balance, geographic setting, and tectonic regime

On the southwest cape of the Congo craton, a subtropical carbonate bank the size of Greenland was heavily glaciated during two Cryogenian panglacial episodes spaced 10–20 Myr apart. In NW Namibia, the bank underwent crustal stretching with resultant Aegean Sea-type topography during the older and lo...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Author: Hoffman, Paul F.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2023
Subjects:
Online Access:http://dx.doi.org/10.1139/cjes-2022-0004
https://cdnsciencepub.com/doi/full-xml/10.1139/cjes-2022-0004
https://cdnsciencepub.com/doi/pdf/10.1139/cjes-2022-0004
Description
Summary:On the southwest cape of the Congo craton, a subtropical carbonate bank the size of Greenland was heavily glaciated during two Cryogenian panglacial episodes spaced 10–20 Myr apart. In NW Namibia, the bank underwent crustal stretching with resultant Aegean Sea-type topography during the older and longer Sturtian glaciation (717–661 Ma). This is indicated by angular discordance between glacial and preglacial strata and diamictites sourced from all older units, including crystalline basement. In contrast, the bank was flat-topped and underwent broad thermal subsidence during Marinoan glaciation (646 ± 5–635 Ma), attested by stratal parallellism and diamictites sourced from ≤100 m stratigraphic depth. However, ≥2.0 km of relief existed on the Marinoan continental slope, where most glacial erosion and accumulation occurred. The average rates of Marinoan erosion (2.55–6.80 m/Myr, n = 190) and accumulation (2.65–7.07 m/Myr, n = 211) are indistinguishable, implying that the location in a continental promontory did not bias erosion over accumulation. The average accumulation rates for the Sturtian and Marinoan, scaled for different averaging times, including Marinoan uncertainty, are 3.95–4.93 m/Myr ( n = 183) and 2.65–7.07 m/Myr ( n = 190), respectively, suggesting that a Marinoan glacioeustatic coastal escarpment substituted for rift-related Sturtian basin-and-range topography. These slow rates, comparable to long-term pre-Quaternary accumulation rates on existing abyssal plains, reconcile glacial sedimentology with the feeble hydrologic cycle of snowball Earth.