Frequency Distribution of Clay Minerals in Major Great Soil Groups as Related to the Factors of Soil Formation

Abstract The frequency distribution or relative abundance of minerals in soils varies with the five principal classes of factors that govern soil formation. The characteristics of the minerals of the parent material, the time factor, climatic factors, relief factors and biotic factors each can be sh...

Full description

Bibliographic Details
Published in:Clays and clay minerals (National Conference on Clays and Clay Minerals)
Main Author: Jackson, M. L.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1957
Subjects:
Online Access:http://dx.doi.org/10.1346/ccmn.1957.0060111
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2640936400001726
Description
Summary:Abstract The frequency distribution or relative abundance of minerals in soils varies with the five principal classes of factors that govern soil formation. The characteristics of the minerals of the parent material, the time factor, climatic factors, relief factors and biotic factors each can be shown to have important independent effects on clay mineralogy of soils under proper circumstances. The soil parent material exerts a control over the frequency distribution of minerals in soils by introduction of the clay minerals into the soil directly, by controlling the course of chemical weathering in the soil through the relative susceptibility of its minerals to weathering, by furnishing abundant divalent metallic cations, by impediment of drainage, or by acceleration of leaching when highly permeable. The time factor is conspicuous as long times give an advanced degree of weathering even in temperate climates. Climate is important, since highly weathered materials inevitably occur as a result of intense leaching in warm tropical and equatorial climates. Relief is important in concentrating leaching water and metallic cations, in affecting oxidation or reduction. The biotic factor affects minerals conspicuously where an A 0 horizon develops and resulting cheluviation moves R 2 O 3 out of the A 2 horizon. Inherited minerals such as illite, quartz, feldspars, ferro-magnesian minerals, carbonates and gypsum are most abundant in clays of little-weathered parent materials and soils of the zonal Desert, Brown, Chestnut and Tundra soils as well as intrazonal Mountain groups and azonal Regosols and Lithosols. Secondary layer silicate minerals such as vermiculite, secondary chlorite, montmorillonite, kaolinite and halloysite are most abundant in clays of moderately weathered parent materials and soils of the zonal Chernozem, Prairie, Gray—Brown Podzolic, Podzol, Red—Yellow Podzolic, and Low Humic Latosol groups as well as intrazonal Planosol, Rendzina, Dark Magnesium soil, and Wiesenboden groups. Secondary sesquioxide ...