Further support for thermal ecosystem engineering by wandering albatross
Abstract On sub-Antarctic Marion Island, wandering albatross ( Diomedea exulans ) nests support high abundances of tineid moth, Pringleophaga marioni , caterpillars. Previous work proposed that the birds serve as thermal ecosystem engineers by elevating nest temperatures relative to ambient, thereby...
Published in: | Antarctic Science |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
2015
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/s0954102015000383 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102015000383 |
id |
crcambridgeupr:10.1017/s0954102015000383 |
---|---|
record_format |
openpolar |
spelling |
crcambridgeupr:10.1017/s0954102015000383 2024-03-03T08:37:11+00:00 Further support for thermal ecosystem engineering by wandering albatross Haupt, Tanya M. Sinclair, Brent J. Shaw, Justine D. Chown, Steven L. 2015 http://dx.doi.org/10.1017/s0954102015000383 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102015000383 en eng Cambridge University Press (CUP) https://www.cambridge.org/core/terms Antarctic Science volume 28, issue 1, page 35-43 ISSN 0954-1020 1365-2079 Geology Ecology, Evolution, Behavior and Systematics Oceanography journal-article 2015 crcambridgeupr https://doi.org/10.1017/s0954102015000383 2024-02-08T08:29:55Z Abstract On sub-Antarctic Marion Island, wandering albatross ( Diomedea exulans ) nests support high abundances of tineid moth, Pringleophaga marioni , caterpillars. Previous work proposed that the birds serve as thermal ecosystem engineers by elevating nest temperatures relative to ambient, thereby promoting growth and survival of the caterpillars. However, only 17 days of temperature data were presented previously, despite year-long nest occupation by birds. Previous sampling was also restricted to old and recently failed nests, though nests from which chicks have recently fledged are key to understanding how the engineering effect is realized. Here we build on previous work by providing nest temperature data for a full year and by sampling all three nest types. For the full duration of nest occupancy, temperatures within occupied nests are significantly higher, consistently by c . 7°C, than those in surrounding soils and abandoned nests, declining noticeably when chicks fledge. Caterpillar abundance is significantly higher in new nests compared to nests from which chicks have fledged, which in turn have higher caterpillar abundances than old nests. Combined with recent information on the life history of P. marioni , our data suggest that caterpillars are incidentally added to the nests during nest construction, and subsequently benefit from an engineering effect. Article in Journal/Newspaper Antarc* Antarctic Antarctic Science Diomedea exulans Marion Island Wandering Albatross Cambridge University Press Antarctic Antarctic Science 28 1 35 43 |
institution |
Open Polar |
collection |
Cambridge University Press |
op_collection_id |
crcambridgeupr |
language |
English |
topic |
Geology Ecology, Evolution, Behavior and Systematics Oceanography |
spellingShingle |
Geology Ecology, Evolution, Behavior and Systematics Oceanography Haupt, Tanya M. Sinclair, Brent J. Shaw, Justine D. Chown, Steven L. Further support for thermal ecosystem engineering by wandering albatross |
topic_facet |
Geology Ecology, Evolution, Behavior and Systematics Oceanography |
description |
Abstract On sub-Antarctic Marion Island, wandering albatross ( Diomedea exulans ) nests support high abundances of tineid moth, Pringleophaga marioni , caterpillars. Previous work proposed that the birds serve as thermal ecosystem engineers by elevating nest temperatures relative to ambient, thereby promoting growth and survival of the caterpillars. However, only 17 days of temperature data were presented previously, despite year-long nest occupation by birds. Previous sampling was also restricted to old and recently failed nests, though nests from which chicks have recently fledged are key to understanding how the engineering effect is realized. Here we build on previous work by providing nest temperature data for a full year and by sampling all three nest types. For the full duration of nest occupancy, temperatures within occupied nests are significantly higher, consistently by c . 7°C, than those in surrounding soils and abandoned nests, declining noticeably when chicks fledge. Caterpillar abundance is significantly higher in new nests compared to nests from which chicks have fledged, which in turn have higher caterpillar abundances than old nests. Combined with recent information on the life history of P. marioni , our data suggest that caterpillars are incidentally added to the nests during nest construction, and subsequently benefit from an engineering effect. |
format |
Article in Journal/Newspaper |
author |
Haupt, Tanya M. Sinclair, Brent J. Shaw, Justine D. Chown, Steven L. |
author_facet |
Haupt, Tanya M. Sinclair, Brent J. Shaw, Justine D. Chown, Steven L. |
author_sort |
Haupt, Tanya M. |
title |
Further support for thermal ecosystem engineering by wandering albatross |
title_short |
Further support for thermal ecosystem engineering by wandering albatross |
title_full |
Further support for thermal ecosystem engineering by wandering albatross |
title_fullStr |
Further support for thermal ecosystem engineering by wandering albatross |
title_full_unstemmed |
Further support for thermal ecosystem engineering by wandering albatross |
title_sort |
further support for thermal ecosystem engineering by wandering albatross |
publisher |
Cambridge University Press (CUP) |
publishDate |
2015 |
url |
http://dx.doi.org/10.1017/s0954102015000383 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102015000383 |
geographic |
Antarctic |
geographic_facet |
Antarctic |
genre |
Antarc* Antarctic Antarctic Science Diomedea exulans Marion Island Wandering Albatross |
genre_facet |
Antarc* Antarctic Antarctic Science Diomedea exulans Marion Island Wandering Albatross |
op_source |
Antarctic Science volume 28, issue 1, page 35-43 ISSN 0954-1020 1365-2079 |
op_rights |
https://www.cambridge.org/core/terms |
op_doi |
https://doi.org/10.1017/s0954102015000383 |
container_title |
Antarctic Science |
container_volume |
28 |
container_issue |
1 |
container_start_page |
35 |
op_container_end_page |
43 |
_version_ |
1792497469327671296 |