Persistent organic pollutants in bird, fish and invertebrate samples from King George Island, Antarctica

Abstract Despite small direct anthropic/anthropogenic influence, Antarctica cannot be considered out of the reach of pollutants. The present study evaluated the distribution and transfer of the following organic pollutants: PCBs (polychlorinated biphenyls), organochlorine pesticides and PBDEs (polyb...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Cipro, Caio V.Z., Colabuono, Fernanda I., Taniguchi, Satie, Montone, Rosalinda Carmela
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2013
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102012001149
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102012001149
Description
Summary:Abstract Despite small direct anthropic/anthropogenic influence, Antarctica cannot be considered out of the reach of pollutants. The present study evaluated the distribution and transfer of the following organic pollutants: PCBs (polychlorinated biphenyls), organochlorine pesticides and PBDEs (polybrominated diphenyl ethers) in invertebrates, fish, bird eggs and liver samples from Admiralty Bay, King George Island, South Shetland Islands. The prevailing compounds were (in ng g -1 wet weight for species averages): PCBs up to 1821 for birds, 6.82 for fish and 41.3 for invertebrates, HCB (hexachlorobenzene) up to 69.8 for birds, 0.66 for fish and 0.56 for invertebrates and DDTs (dichlorodiphenyltrichloroethane) up to 524 for birds, 3.04 for fish and 0.74 for invertebrates. PBDEs (detected only in bird eggs and liver, up to 39.1 and 7.95, respectively) occurred in levels one or two orders of magnitude lower than organochlorines, probably due to the lower and more recent usage of PBDEs. The qualitative profiles of PCBs agree with trophic level and diet data. PBDEs showed small difference in composition when compared to the technical product available in the Americas, especially in endemic species, which could indicate that fractionation does not have a major role for this contaminant group. Trophic level, but also and more importantly, diet, range, ecological niche and “growth dilution” effect explain the variation of pollutants concentrations found in this study.