Decadal variability of winter temperatures in the Antarctic Peninsula region

Abstract Rapid climate warming has been observed in the region of the Antarctic Peninsula since the middle of the last century with the largest warming rate in the winter. Decadal variability of winter temperature on the regional scale was analysed using eight station datasets of the Antarctic Penin...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Kravchenko, V.O., Evtushevsky, O.M., Grytsai, A.V., Milinevsky, G.P.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2011
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102011000423
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102011000423
Description
Summary:Abstract Rapid climate warming has been observed in the region of the Antarctic Peninsula since the middle of the last century with the largest warming rate in the winter. Decadal variability of winter temperature on the regional scale was analysed using eight station datasets of the Antarctic Peninsula region. The Scientific Committee on Antarctic Research Reference Antarctic Data for Environmental Research from the period 1950–2009 were used. Fourier and wavelet transforms of the averaged temperature anomaly time series reveal a clear separation between the oscillations with three to eight year periods and a decadal oscillation with a period of around 16 years. On the Antarctic Peninsula region scale, 16 year periodicity in the winter temperature variability has not been described before. Both spectral components show similar spectral power and statistical significance (5–10%). This is evidence of their comparable importance for winter temperature changes in the Antarctic Peninsula region. The three to eight year periods are most probably related to the El Niño–Southern Oscillation and Antarctic Circumpolar Wave signals, but the 16 year oscillation has not been identified within the scope of this analysis. The possible effect of the decadal oscillation in the winter temperature trend estimate is discussed.