A study of surface heat fluxes in the Ross Sea (Antarctica)

In the polar regions, dynamical and thermodynamical interactions between atmosphere and ocean are strongly influenced by the presence or absence of the ice cover, which forms an insulating layer over the ocean, hindering sensible heat fluxes and forming an effective barrier to evaporation and thus p...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Budillon, Giorgio, Fusco, Giannetta, Spezie, Giancarlo
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2000
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102000000298
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102000000298
id crcambridgeupr:10.1017/s0954102000000298
record_format openpolar
spelling crcambridgeupr:10.1017/s0954102000000298 2024-09-30T14:27:05+00:00 A study of surface heat fluxes in the Ross Sea (Antarctica) Budillon, Giorgio Fusco, Giannetta Spezie, Giancarlo 2000 http://dx.doi.org/10.1017/s0954102000000298 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102000000298 en eng Cambridge University Press (CUP) https://www.cambridge.org/core/terms Antarctic Science volume 12, issue 2, page 243-254 ISSN 0954-1020 1365-2079 journal-article 2000 crcambridgeupr https://doi.org/10.1017/s0954102000000298 2024-09-18T04:04:04Z In the polar regions, dynamical and thermodynamical interactions between atmosphere and ocean are strongly influenced by the presence or absence of the ice cover, which forms an insulating layer over the ocean, hindering sensible heat fluxes and forming an effective barrier to evaporation and thus preventing latent heat loss. In the framework of the CLIMA (Climatic Long-term Interactions for the Mass-balance in Antarctica) project of the Italian PNRA (National Program for Antarctic Research) we focused our attention on the evaluation of the heat fluxes between the ocean and the atmosphere in the Ross Sea, where the ice covers the sea for many months of the year. Wherever the ice cover is absent all year round, such as in leads or polynyas, the air-sea fluxes can be very large, especially in winter when the air-sea temperature differences are strong. In this work heat exchanges between sea and atmosphere, whether ice cover was present or not, were calculated from climatological data obtained from the European Centre for Medium Range Weather Forecasts, while sea ice data were collected from the US National Ice Center and National Climatic Data Center. Each of the terms in the sea surface heat budget were computed for 1994 with a temporal resolution of six hours and a spatial resolution of 0.5° using bulk formulae and obtaining monthly averaged horizontal distributions. The surface heat budget is dominated in November, December, January and February by shortwave radiation, while for the other months the turbulent and conductive heat fluxes dominate the heat exchange between the atmosphere and the sea surface. The annual total heat loss at the surface in 1994 has been estimated at about −90 W m −2 with the highest heat loss occurring close to the coast; the maximum heat loss occurred in May (−217 W m −2 ) while in January the heat gain by the ocean was 196 W m −2 . In addition, weekly averaged values over the whole Ross Sea from 1994 to 1997 were calculated with the same parameterisation in order to study the ... Article in Journal/Newspaper Antarc* Antarctic Antarctic Science Antarctica Ross Sea Sea ice Cambridge University Press Antarctic Ross Sea Antarctic Science 12 2 243 254
institution Open Polar
collection Cambridge University Press
op_collection_id crcambridgeupr
language English
description In the polar regions, dynamical and thermodynamical interactions between atmosphere and ocean are strongly influenced by the presence or absence of the ice cover, which forms an insulating layer over the ocean, hindering sensible heat fluxes and forming an effective barrier to evaporation and thus preventing latent heat loss. In the framework of the CLIMA (Climatic Long-term Interactions for the Mass-balance in Antarctica) project of the Italian PNRA (National Program for Antarctic Research) we focused our attention on the evaluation of the heat fluxes between the ocean and the atmosphere in the Ross Sea, where the ice covers the sea for many months of the year. Wherever the ice cover is absent all year round, such as in leads or polynyas, the air-sea fluxes can be very large, especially in winter when the air-sea temperature differences are strong. In this work heat exchanges between sea and atmosphere, whether ice cover was present or not, were calculated from climatological data obtained from the European Centre for Medium Range Weather Forecasts, while sea ice data were collected from the US National Ice Center and National Climatic Data Center. Each of the terms in the sea surface heat budget were computed for 1994 with a temporal resolution of six hours and a spatial resolution of 0.5° using bulk formulae and obtaining monthly averaged horizontal distributions. The surface heat budget is dominated in November, December, January and February by shortwave radiation, while for the other months the turbulent and conductive heat fluxes dominate the heat exchange between the atmosphere and the sea surface. The annual total heat loss at the surface in 1994 has been estimated at about −90 W m −2 with the highest heat loss occurring close to the coast; the maximum heat loss occurred in May (−217 W m −2 ) while in January the heat gain by the ocean was 196 W m −2 . In addition, weekly averaged values over the whole Ross Sea from 1994 to 1997 were calculated with the same parameterisation in order to study the ...
format Article in Journal/Newspaper
author Budillon, Giorgio
Fusco, Giannetta
Spezie, Giancarlo
spellingShingle Budillon, Giorgio
Fusco, Giannetta
Spezie, Giancarlo
A study of surface heat fluxes in the Ross Sea (Antarctica)
author_facet Budillon, Giorgio
Fusco, Giannetta
Spezie, Giancarlo
author_sort Budillon, Giorgio
title A study of surface heat fluxes in the Ross Sea (Antarctica)
title_short A study of surface heat fluxes in the Ross Sea (Antarctica)
title_full A study of surface heat fluxes in the Ross Sea (Antarctica)
title_fullStr A study of surface heat fluxes in the Ross Sea (Antarctica)
title_full_unstemmed A study of surface heat fluxes in the Ross Sea (Antarctica)
title_sort study of surface heat fluxes in the ross sea (antarctica)
publisher Cambridge University Press (CUP)
publishDate 2000
url http://dx.doi.org/10.1017/s0954102000000298
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102000000298
geographic Antarctic
Ross Sea
geographic_facet Antarctic
Ross Sea
genre Antarc*
Antarctic
Antarctic Science
Antarctica
Ross Sea
Sea ice
genre_facet Antarc*
Antarctic
Antarctic Science
Antarctica
Ross Sea
Sea ice
op_source Antarctic Science
volume 12, issue 2, page 243-254
ISSN 0954-1020 1365-2079
op_rights https://www.cambridge.org/core/terms
op_doi https://doi.org/10.1017/s0954102000000298
container_title Antarctic Science
container_volume 12
container_issue 2
container_start_page 243
op_container_end_page 254
_version_ 1811633241796378624