Selective factors in the origin of the mammalian diaphragm

The origin of endothermic homeothermy and of high metabolic rate in mammals is currently believed to be the result of early (Mesozoic) selection in advanced cynodont therapsids and/or early mammals for either (1) enhanced thermoregulatory capacity or (2) increased powers of endurance and stamina. Se...

Full description

Bibliographic Details
Published in:Paleobiology
Main Authors: Ruben, John A., Bennett, Albert F., Hisaw, Frederick L.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1987
Subjects:
Online Access:http://dx.doi.org/10.1017/s0094837300008575
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0094837300008575
Description
Summary:The origin of endothermic homeothermy and of high metabolic rate in mammals is currently believed to be the result of early (Mesozoic) selection in advanced cynodont therapsids and/or early mammals for either (1) enhanced thermoregulatory capacity or (2) increased powers of endurance and stamina. Selective factors underlying the origin of specialized respiration/ventilation-support systems in mammals are possible indices of the validity of these two hypotheses. One such support structure is the diaphragm, a specialized muscle that facilitates lung ventilation. We tested capacity for maintenance of resting metabolic rate, thermoregulation, and for extended, intense exercise in laboratory rats ( Rattus rattus ) in which diaphragm function had been completely ablated. The results were virtual elimination of aeroboic scope (active metabolic rate — resting metabolic rate) but resting metabolic rate was unaffected. Thermoregulatory capacity was unimpaired to at least 8° below lower critical temperature. These and other data suggest that the origin of the mammalian diaphragm, as well as mammalian metabolic rates, may have been related to selection for greater levels of sustainable activity rather than for functions associated with thermoregulation.