Community structure of Harpacticoida and Canuelloida (Crustacea, Copepoda) on the Great Meteor Seamount (North-east Atlantic Ocean)

Abstract During the expedition POS397 ‘GroMet’ in 2010 the sediments of the Great Meteor Seamount (GMS) plateau were sampled quantitatively for the first time, allowing statistical analysis of the community structure of Harpacticoida and Canuelloida. Analysis of similarity revealed no differences be...

Full description

Bibliographic Details
Published in:Journal of the Marine Biological Association of the United Kingdom
Main Authors: Richter, Karin, George, Kai Horst
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2019
Subjects:
Online Access:http://dx.doi.org/10.1017/s0025315419000444
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0025315419000444
Description
Summary:Abstract During the expedition POS397 ‘GroMet’ in 2010 the sediments of the Great Meteor Seamount (GMS) plateau were sampled quantitatively for the first time, allowing statistical analysis of the community structure of Harpacticoida and Canuelloida. Analysis of similarity revealed no differences between three geographic regions at family/species level. Analysis of diversity indicated slightly greater diversity in the south, with more species belonging to more genera/families. Dispersal opportunities possibly occurring at the plateau (emergence, erosion, rafting) are discussed. Of 18 investigated families 106 species were identified, but only 5.66% were already scientifically known and widely distributed. Within the investigated families, 37.74% of the species belonged to shallow-water genera, leading to the conclusion that the plateau was once connected to shallow-water habitats, perhaps functioning as a stepping stone, but is now geographically isolated. This isolation is most likely due to seafloor spreading of the Atlantic Ocean and descending of the GMS. On the plateau, six species with wider distribution ranges were present, indicating that species may arrive accidentally, but their means of settlement remains unknown. Comparisons of the identified GMS plateau fauna with that of other seamounts and mid-oceanic islands revealed similar communities at family level, but at species level the GMS shares only one species with the Seine Seamount; all other elevations had more species in common. Hence, the GMS plateau is considered to be isolated regarding benthic Copepoda but may play an important role in meiofaunal species distribution, as it represents a shallow-water habitat within the deep sea.