Ecological plasticity of the European eel Anguilla anguilla in a tidal Atlantic lake system in Ireland
Abstract Recent studies have shown that anguillid eel populations in habitats spanning the marine–freshwater ecotone can display extreme plasticity in the range of catadromy expressed by individual fish. The apparent use of marine and freshwater habitats by the European eel Anguilla anguilla was exa...
Published in: | Journal of the Marine Biological Association of the United Kingdom |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
2019
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/s0025315419000031 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0025315419000031 |
Summary: | Abstract Recent studies have shown that anguillid eel populations in habitats spanning the marine–freshwater ecotone can display extreme plasticity in the range of catadromy expressed by individual fish. The apparent use of marine and freshwater habitats by the European eel Anguilla anguilla was examined by analysing the strontium (Sr) and calcium (Ca) concentrations in otoliths of eels collected from a tidal Atlantic lake system in Ireland. Variations of the Sr:Ca ratio in the otoliths indicated that a variety of environmental salinities had been experienced in the habitats that were occupied during the growth phase of these individuals in the tidal Atlantic lake system. The otolith microchemistry of these eels indicated that most of the eels had entered each salinity environment (freshwater (FW); brackish water (BW); marine-dominated water (MW) and full seawater (SW)) from fresh water to full seawater just after recruitment and had stayed in each environment until maturation without movement to other salinity environments. Only 2 of 93 (2%) eels had shifted their habitat once in their lives. This result suggests that each individual might have an environmental habitat preference, although each individual could move along a short (<2 km) salinity gradient. |
---|