On the necessary complexity of modeling of the Polar Mesosphere Summer Echo Overshoot Effect

Abstract Recent numerical studies of the Polar Mesosphere Summer Echo (PMSE) Overshoot Effect predict the basic shape of the Overshoot Characteristic Curve (OCC) to undergo dramatic changes as the frequency of the radar decreases. Principally, this may render earlier modeling, which assumed near-ins...

Full description

Bibliographic Details
Published in:Journal of Plasma Physics
Main Authors: BIEBRICHER, ALEXANDER, HAVNES, OVE, BAST, RADOVAN
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2012
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022377811000596
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022377811000596
Description
Summary:Abstract Recent numerical studies of the Polar Mesosphere Summer Echo (PMSE) Overshoot Effect predict the basic shape of the Overshoot Characteristic Curve (OCC) to undergo dramatic changes as the frequency of the radar decreases. Principally, this may render earlier modeling, which assumed near-instantaneous diffusion of electrons and ions, moot and exacerbate algebraic analysis of OCC obtained in the future with, e.g. the MORRO-radar (56 MHz) and a synchronized radio wave emitter, both at or near the European Incoherent Scatter (EISCAT) Scientific Association's site in Ramfjordmoen near Tromsø, Norway. Since, however, by far the most observational results on the PMSE Overshoot Effect have been assembled with the help of the Very High Frequency (VHF, 224 MHz) radar and the an Ultra High Frequency (UHF, 929 MHz) radar, both at the EISCAT site, we examine more closely whether near-instantaneous diffusion is a valid assumption for these particular frequencies. We show that, indeed, the earlier less complex and analytically more accessible model can still be considered sufficient for most, if not all, existing experimental data.