Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates

Abstract By fitting a very simple atmospheric impurity model to high-resolution data on ice accumulation and contaminant fluxes in the GISP2 ice core, we have estimated changes in the atmospheric concentrations of soluble major ions, insoluble particulates and 10 Be during the transition from glacia...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Alley, R. B., Finkel, R. C., Nishiizumi, K., Anandakrishnan, S., Shuman, C. A., Mershon, G., Zielinski, G. A., Mayewski, P. A.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1995
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000034845
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000034845
Description
Summary:Abstract By fitting a very simple atmospheric impurity model to high-resolution data on ice accumulation and contaminant fluxes in the GISP2 ice core, we have estimated changes in the atmospheric concentrations of soluble major ions, insoluble particulates and 10 Be during the transition from glacial to Holocene conditions. For many species, changes in concentration in the ice typically overestimate atmospheric changes, and changes in flux to the ice typically underestimate atmospheric changes, because times of increased atmospheric contaminant loading are also times of reduced snowfall. The model interpolates between the flux and concentration records by explicitly allowing for wet- and dry-deposition processes. Compared to the warm Preboreal that followed, we estimate that the atmosphere over Greenland sampled by snow accumulated during the Younger Dryas cold event contained on average four–seven times the insoluble particulates and nearly seven times the soluble calcium derived from continental sources, and about three times the sea salt but only slightly more cosmogenic 10 Be.