Ultrasonic Properties of Plastically Deformed Ice

Abstract Many authors have used propagation of ultrasonic waves in ice for glaciological studies. This propagation is characterized by the velocity of sound and by the attenuation of stress waves. In crystalline materials, these two characteristics depend on structural slate. In particular plastic d...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Tatibouet, J., Vassoille, R., Perez, J.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1975
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000034353
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000034353
Description
Summary:Abstract Many authors have used propagation of ultrasonic waves in ice for glaciological studies. This propagation is characterized by the velocity of sound and by the attenuation of stress waves. In crystalline materials, these two characteristics depend on structural slate. In particular plastic deformation gives velocity and attenuation variations. We have measured the sound velocity and attenuation of ultrasonic waves in strained specimens of ice (single crystals and polycrystals). These measurements done between 100 and 273 K at a frequency of 5 MHz show that plastic deformation leads to an increase of attenuation arid an increase of velocity. Annealing treatments at 271 K cause recovery of propagation characteristics. The variation in attenuation can be interpreted by the theory of dislocations and this interpretation is supported by our data on the influence of frequency on this increase of attenuation induced by plastic deformation, but the theory of dislocations implies a decrease of modulus, i.e. of velocity, hence we must postulate that an added phenomenon screens the effect of dislocations. That phenomenon could be connected with ageing effects observed on different physical properties of ire and may be due to modification of protonic arrangement or creation of interstitials during plastic deformation. Thus our experiments show that it is necessary to be careful in using results determined from the propagation of ultrasonic waves in ice.