Erosion by Continental Ice Sheets
Abstract Some of the problems with earlier theories for erosion and transport by ice sheets are discussed, and it is noted that those theories cannot simply account for the often-reported finding that most till is derived from bedrock only a few tens of kilometers up-glacier. Considerations of the m...
Published in: | Journal of Glaciology |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
1979
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/s0022143000029981 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000029981 |
Summary: | Abstract Some of the problems with earlier theories for erosion and transport by ice sheets are discussed, and it is noted that those theories cannot simply account for the often-reported finding that most till is derived from bedrock only a few tens of kilometers up-glacier. Considerations of the mass balance of debris in transport lead to the conclusion that ice sheets are capable of transporting most debris only a short distance. The theory that the break-up of bedrock is mostly a preglacial process is developed. The advancing ice sheet collects the debris and then deposits it after a short travel. As the ice sheet first advances over the regolith, debris is frozen onto the base and is carried until basal melting due to geothermal and frictional heat causes lodgment till deposition. Most debris is deposited during the advance of the ice sheet and is carried only a short distance. A generally small amount of debris is carried at higher levels and is deposited during ice standstill and retreat as melt-out and ablation tills. The present theory makes many predictions, among them, that most till units are not traceable over long distances, that thick till sequences represent unstable glacier margins and not necessarily long periods of glacier occupation, and that lodgment tills are to be interpreted in terms of ice advances and ablation tills in terms of ice retreats. This paper is published in full in Journal of Geology , Vol. 86, No. 4, 1978, p. 516–24. |
---|