Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers
Abstract Two components of discharge through the internal hydrological systems of Alpine glaciers were separated on the basis of chemical composition of water. Some surface melt waters retain low solute contents after flowing without delay through conduits in which no chemical enrichment occurs, whe...
Published in: | Journal of Glaciology |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
1979
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/s0022143000029956 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000029956 |
id |
crcambridgeupr:10.1017/s0022143000029956 |
---|---|
record_format |
openpolar |
spelling |
crcambridgeupr:10.1017/s0022143000029956 2024-04-07T07:53:41+00:00 Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers Collins, David N. 1979 http://dx.doi.org/10.1017/s0022143000029956 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000029956 en eng Cambridge University Press (CUP) Journal of Glaciology volume 23, issue 89, page 347-362 ISSN 0022-1430 1727-5652 Earth-Surface Processes journal-article 1979 crcambridgeupr https://doi.org/10.1017/s0022143000029956 2024-03-08T00:35:52Z Abstract Two components of discharge through the internal hydrological systems of Alpine glaciers were separated on the basis of chemical composition of water. Some surface melt waters retain low solute contents after flowing without delay through conduits in which no chemical enrichment occurs, whereas those flowing slowly at the glacier bed have increased ionic concentrations. A simple mixing model was used to investigate temporal variations in the quantities of water routed through each of the two sub-systems. Electrical conductivity was taken as an indicator of melt-water composition and was monitored for periods during the summer ablation season of 1975 at Gornergletscher and of 1977 at Findelengletscher. At both glaciers, conductivity of melt waters varied diurnally inversely with discharge fluctuations, depending on the proportion of total discharge routed through the two sub-systems. Total discharge and the flow component routed rapidly through conduits within the glacier, a large proportion (50–80%) of total discharge, exhibited in-phase rhythmic diurnal hydrographs at the two glaciers. Distinctive subglacial hydrological regimes are contrasted. At Findelengletscher, the hydrographs of total discharge and of subglacial chemically enriched flow were in phase. At Gornergletscher, the subglacial hydrograph occurred with reverse asymmetry and out of phase. A possible interpretation is that water was temporarily stored in basal cavities during high total discharge. During the night, stored water was released, contributing much of the total discharge at times of low flow. Article in Journal/Newspaper Journal of Glaciology Cambridge University Press Journal of Glaciology 23 89 347 362 |
institution |
Open Polar |
collection |
Cambridge University Press |
op_collection_id |
crcambridgeupr |
language |
English |
topic |
Earth-Surface Processes |
spellingShingle |
Earth-Surface Processes Collins, David N. Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers |
topic_facet |
Earth-Surface Processes |
description |
Abstract Two components of discharge through the internal hydrological systems of Alpine glaciers were separated on the basis of chemical composition of water. Some surface melt waters retain low solute contents after flowing without delay through conduits in which no chemical enrichment occurs, whereas those flowing slowly at the glacier bed have increased ionic concentrations. A simple mixing model was used to investigate temporal variations in the quantities of water routed through each of the two sub-systems. Electrical conductivity was taken as an indicator of melt-water composition and was monitored for periods during the summer ablation season of 1975 at Gornergletscher and of 1977 at Findelengletscher. At both glaciers, conductivity of melt waters varied diurnally inversely with discharge fluctuations, depending on the proportion of total discharge routed through the two sub-systems. Total discharge and the flow component routed rapidly through conduits within the glacier, a large proportion (50–80%) of total discharge, exhibited in-phase rhythmic diurnal hydrographs at the two glaciers. Distinctive subglacial hydrological regimes are contrasted. At Findelengletscher, the hydrographs of total discharge and of subglacial chemically enriched flow were in phase. At Gornergletscher, the subglacial hydrograph occurred with reverse asymmetry and out of phase. A possible interpretation is that water was temporarily stored in basal cavities during high total discharge. During the night, stored water was released, contributing much of the total discharge at times of low flow. |
format |
Article in Journal/Newspaper |
author |
Collins, David N. |
author_facet |
Collins, David N. |
author_sort |
Collins, David N. |
title |
Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers |
title_short |
Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers |
title_full |
Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers |
title_fullStr |
Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers |
title_full_unstemmed |
Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers |
title_sort |
quantitative determination of the subglacial hydrology of two alpine glaciers |
publisher |
Cambridge University Press (CUP) |
publishDate |
1979 |
url |
http://dx.doi.org/10.1017/s0022143000029956 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000029956 |
genre |
Journal of Glaciology |
genre_facet |
Journal of Glaciology |
op_source |
Journal of Glaciology volume 23, issue 89, page 347-362 ISSN 0022-1430 1727-5652 |
op_doi |
https://doi.org/10.1017/s0022143000029956 |
container_title |
Journal of Glaciology |
container_volume |
23 |
container_issue |
89 |
container_start_page |
347 |
op_container_end_page |
362 |
_version_ |
1795669774410186752 |