Studies of Englacial Profiles in the Lake Hazen Area of Northern Ellesmere Island

Abstract Glaciological research on the ice cap to the north of Lake Hazen in northern Ellesmere Island was one of the main objectives of the Canadian I.G.Y. expedition to this area in 1957–1958. The method of nourishment of this ice cap and of Gilman Glacier, one of its southward-flowing outlets, wa...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Hattersley-Smith, G.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1960
Subjects:
Online Access:http://dx.doi.org/10.1017/s002214300002373x
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S002214300002373X
Description
Summary:Abstract Glaciological research on the ice cap to the north of Lake Hazen in northern Ellesmere Island was one of the main objectives of the Canadian I.G.Y. expedition to this area in 1957–1958. The method of nourishment of this ice cap and of Gilman Glacier, one of its southward-flowing outlets, was studied in pit and bore hole profiles above and below the equilibrium line, which was found at an elevation of about 1,200 m. Between an elevation of about 1,450 and 2,000 m. accumulation is by firn formation, while between about 1,280 and 1,450 m. interfingering of firn and superimposed ice occurs. At 1,800 m. the mean annual accumulation over the past twenty years is estimated as 12.8 g. cm. –2 . On Gilman Glacier below the equilibrium line variations in density and crystal structure in an ice core to a depth of 25 m. are seen to depend on the proportion of firn to superimposed ice formed during accumulation. These variations correspond to past changes in the position of the equilibrium line. Englacial temperature measurements indicate a mean annual temperature of about –18.5° C. at an elevation of 1 ,040 m. A budget deficit for Gilman Glacier during two years of observations may be related to the increased summer melting of the last 20 years, deduced from pit studies at 1,800 m.