Variations of ablation, albedo and energy balance at the margin of the Greenland ice sheet, Kronprins Christian Land, eastern north Greenland

Abstract A meteorological and glaciological experiment was carried out in July 1993 at the margin of the Greenland ice sheet in Kronprins Christian Land, eastern north Greenland. Within a small area (about 100 m 2 ) daily measurements were made on ten ablation stakes fixed in “light” and “dark” ice...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Konzelmann, Thomas, Braithwaite, Roger J.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1995
Subjects:
Online Access:http://dx.doi.org/10.1017/s002214300001786x
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S002214300001786X
Description
Summary:Abstract A meteorological and glaciological experiment was carried out in July 1993 at the margin of the Greenland ice sheet in Kronprins Christian Land, eastern north Greenland. Within a small area (about 100 m 2 ) daily measurements were made on ten ablation stakes fixed in “light” and “dark” ice and were compared to each other. Simultaneously, the components of the energy balance, including net radiation, sensible-heat flux, latent-heat flux and conductive-heat flux in the ice were determined. Global radiation, longwave incoming radiation and albedo were measured, and longwave outgoing radiation was calculated by assuming that the glacier surface was melting. Sensible-and latent-heat fluxes were calculated from air temperature, humidity and wind speed. Conductive-heat flux in the ice was estimated by temperature-profile measurements in the uppermost ice layer. Net radiation is the major source of ablation energy, and turbulent fluxes are smaller energy sources by about three times, while heat flux into the ice is a substantial heat sink, reducing energy available for ice melt. Albedo varies from 0.42 to 0.56 within the experimental site and causes relatively large differences in ablation at stakes close to each other. Small-scale albedo variations should therefore be carefully sampled for large-scale energy-balance calculations.