Airborne-radar studies: Ice Streams A, B and C, West Antarctica

Abstract Digital airborne-radar data were collected during the 1988–89 Antarctic field season in six gridded blocks covering the upstream parts of Ice Streams A, Β and C. An automated processing procedure was developed for picking onset times, converting travel times, interpolating missing data, con...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Retzlaff, R., Lord, N., Bentley, C.R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1993
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000016397
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000016397
Description
Summary:Abstract Digital airborne-radar data were collected during the 1988–89 Antarctic field season in six gridded blocks covering the upstream parts of Ice Streams A, Β and C. An automated processing procedure was developed for picking onset times, converting travel times, interpolating missing data, converting pressure-transducer readings, correcting navigational drift, performing cross-over analysis and zeroing remanent cross-over errors. Cross-over analysis was used to remove the effects of temporal variations in atmospheric pressure and to estimate errors. Interpolation between flight lines was carried out using the Kriging method. Surface elevation was referred to the Rapp Set A geoid by tying the gridded surface to satellite-surveyed ground stations, using a planar-model fit. Maps of surface elevation, ice thickness and bottom topography with standard-error estimates of 4–9 m for surface elevation and 30–60 m for ice thickness and bottom topography were produced. These maps show that the locations of the ice streams are not clearly reflected in either the surface or basal topography, so are presumably controled by basal or internal conditions, that there is no clearly demarcated transition zone between sheet flow and streaming flow, that there is no clear cut evidence for the capture of the catchment of Ice Stream C by Ice Stream B, but that Ice Stream Β does drain virtually the entire region between the lateral boundaries of Ice Streams A and C.