Snow–Avalanche Impact on Structures

Abstract Two–dimensional hydrodynamic equations for laminar, viscous flow, and admitting a frictional slip-plane lower boundary are applied to the modeling of snow-avalanche impact on rigid wall structures. Predicted maximum pressures and pressures versus time are compared with published experimenta...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Lang, Theodore E., Brown, Robert L.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1980
Subjects:
Online Access:http://dx.doi.org/10.1017/s002214300001529x
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S002214300001529X
Description
Summary:Abstract Two–dimensional hydrodynamic equations for laminar, viscous flow, and admitting a frictional slip-plane lower boundary are applied to the modeling of snow-avalanche impact on rigid wall structures. Predicted maximum pressures and pressures versus time are compared with published experimental results, and general correspondence is established. Impact pressure versus time is found to depend upon the shape of the avalanche leading edge, for which general information is lacking. Computer modeling of more complex structural configurations is feasible using the methodology reported.