The Pendular-Funicular Liquid Transition and Snow Metamorphism

Abstract The influence of snow structure on the liquid water distribution is recorded by measuring the high-frequency relative permittivity. The structure is characterized by the size and the shape of the ice grains, which are derived by analyzing the static dielectric constant and by analyzing phot...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Denoth, A.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1982
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000011692
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000011692
Description
Summary:Abstract The influence of snow structure on the liquid water distribution is recorded by measuring the high-frequency relative permittivity. The structure is characterized by the size and the shape of the ice grains, which are derived by analyzing the static dielectric constant and by analyzing photographs of the surface of the snow samples. The liquid distribution is very sensitive to the liquid saturation and to the shape of the ice grains; it is unaffectcd by the grain size. A transition from the pendular into the funicular mode of liquid distribution occurs in the range of 7 to 18% saturation. This transitional zone is very sensitive to the structure of snow; it decreases from approximately 13 to 18% liquid saturation for new snow to 7 to 12% saturation for old, coarse-grained snow.