BEPERS pilot study: an experiment with X-band synthetic aperture radar over Baltic Sea ice

Abstract Remote-sensing methods are the primary ones used for ice mapping in the Baltic Sea. A major methodological improvement is now being introduced by satellite radars due to their weather independency and high resolution. To learn how to use ERS-1 synthetic aperture radar (SAR) data, an extensi...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Leppäranta, Matti, Kuittinen, Rlsto, Askne, Jan
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1992
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000009564
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000009564
Description
Summary:Abstract Remote-sensing methods are the primary ones used for ice mapping in the Baltic Sea. A major methodological improvement is now being introduced by satellite radars due to their weather independency and high resolution. To learn how to use ERS-1 synthetic aperture radar (SAR) data, an extensive field programme BEPERS (Bothnian Experiment in Preparation for ERS-1) with airborne SARs has been arranged. The BEPERS pilot study was undertaken in 1987 using the French VARAN-S X-band SAR. The SAR was flown on 1 day over four study areas of size approximately 10 km x 50 km, and intensive validation observations were made. The data were most useful for the education they provided on how to work with SAR in sea-ice mapping. They have been used for developing SAR image-analysis methods, back-scatter modelling investigations and geophysical validation of SAR imagery. Cleaning-up of images consisted of speckle reduction and segmentation. Back-scatter characteristics of undeformed ice and ridges were examined. Ice-type classification was based on the box-classification method. Eight ice types were defined but basically only two types, undeformed ice/open water and deformed ice, could be discriminated. Two basic problems of high practical importance remained: how to discriminate between (1) open water and undeformed ice, and (2) ridged ice and brash ice. The data further showed illustrative examples of SAR imagery over sea ice.