Crystalline Texture of the 2083 m Ice Core at Vostok Station, Antarctica

Abstract Crystalline texture and c -axis orientation of the 2083 m ice core at Vostok Station, covering more than 150kyear, reveal the existence of strong anisotropics. Changes in crystal size with depth are compatible with the growth of grains driven by the free energy of grain boundaries. A smalle...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Lipenkov, V.Ya., Barkov, N.I., Duval, P., Pimienta, P.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1989
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000009321
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000009321
Description
Summary:Abstract Crystalline texture and c -axis orientation of the 2083 m ice core at Vostok Station, covering more than 150kyear, reveal the existence of strong anisotropics. Changes in crystal size with depth are compatible with the growth of grains driven by the free energy of grain boundaries. A smaller growth rate appears to be associated with cold periods. A gradual increase in the horizontal elongation of grains was observed between 350 and 680 m. But, the mean value of the coefficient of the linear dimensional orientation of grains does not change below 700 m. The c -axis orientation of ice grains tends to orientate perpendicular to the direction of the elongation of grains, forming a vertical girdle pattern. This characteristic fabric has been interpreted as resulting from the gradual rotation of grains by basal glide under uniaxial longitudinal tension. The rotation of grains was calculated with respect to the total strain, simulating the formation of the girdle fabric pattern. The fabric-enhancement factor was calculated at various depths. It appears that Vostok ice hardens gradually with depth when considering the transverse convergent flow. No significant variation of the enhancement factor was observed with changes in climate and impurity content.