Dual Frequency Radar Ice and Snow Signatures
Abstract Dual frequency (X-band and L-band) synthetic-aperture radar imagery of sea ice is examined to show the differences between the bands and their complementary nature for resolving ambiguities in interpretation. High backscatter at X-band from visibly smooth thin ice is not observed at L-band....
Published in: | Journal of Glaciology |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
1983
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/s0022143000008340 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000008340 |
Summary: | Abstract Dual frequency (X-band and L-band) synthetic-aperture radar imagery of sea ice is examined to show the differences between the bands and their complementary nature for resolving ambiguities in interpretation. High backscatter at X-band from visibly smooth thin ice is not observed at L-band. One hypothesis is that the high X-band backscatter may be caused by a reflective layer at the snow/ice interface. A second hypothesis is that the high X-band backscatter may be caused by moisture in the snow. A third hypothesis states that the phenomenon may be due to snow flowers. High backscatter at L-band is observed for slush on open water. The return is very weak at X-band, thus allowing distinction of slush by comparing L-band and X-band images. High intensity, but only partial returns from icebergs at L-band have been observed. The hypothesis is that internal iceberg/sea-water reflections are occurring. Some signals are directed away from the antenna, other reinforced signals are returned, producing very bright images. Occasionally, time-delayed signals are returned causing a false image at far range from the iceberg. The conclusion is that L-band is a poor choice for studies of iceberg distribution and size, but a good choice for iceberg detection because of the high reinforced returns from many icebergs and the low return from the adjacent sea ice. The penetration and subsequent signal loss of L-band in glacial ice, when compared to high X-band returns, may be useful to map glacierized land masses. |
---|